

ibm.com/redbooks

Getting Started with
Tivoli Dynamic Workload
Broker Version 1.1

Vasfi Gucer
Jackie Biggs

 Alfredo Cappariello
Matt Dufner

Clinton Easterling
Martin Lisy

Tony Liu
Joe Lopez

Andrea Olivier
Michael Petersen

Geoff Pusey
Bosse Waenglund

John Welsh

Insider’s guide to IBM Tivoli Dynamic
Workload Broker

High availability and
performance considerations

Integration scenarios

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Getting Started with Tivoli Dynamic Workload
Broker Version 1.1

July 2007

International Technical Support Organization

SG24-7442-00

© Copyright International Business Machines Corporation 2007. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (July 2007)

This edition applies to IBM Tivoli Dynamic Workload Broker Version 1.1.

Note: Before using this information and the product it supports, read the information in
“Notices” on page xiii.

Contents

Notices . xiii
Trademarks . xiv

Preface . xv
The team that wrote this IBM Redbook . xv
Become a published author . xviii
Comments welcome. xviii

Chapter 1. Tivoli Dynamic Workload Broker overview. 1
1.1 Market trends and directions . 2
1.2 Business solutions. 3
1.3 Major functions of Tivoli Dynamic Workload Broker 5

1.3.1 IBM Tivoli workload automation portfolio . 6
1.3.2 Tivoli workload automation integration with IBM products 7

1.4 Business scenarios . 7
1.4.1 Tivoli Workload Scheduler with Tivoli Dynamic Workload Broker 9
1.4.2 Tivoli Workload Scheduler and Tivoli Workload Scheduler LoadLeveler

10
1.4.3 Tivoli Workload Scheduler for z/OS end-to-end with Tivoli Dynamic

Workload Broker . 12
1.4.4 Tivoli Dynamic Workload Broker as a Web Services solution. 14

1.5 Technical overview . 16

Chapter 2. Tivoli Dynamic Workload Broker architecture 25
2.1 Topological view . 27
2.2 Major server components . 28

2.2.1 Resource Repository. 32
2.2.2 Resource Advisor . 32
2.2.3 Job Dispatcher . 33
2.2.4 Job Repository . 33
2.2.5 Allocation Repository . 34

2.3 Tivoli Dynamic Workload Broker agent . 34
2.3.1 Major agent components. 35
2.3.2 Agent subcomponents . 35

2.4 Common Agent Services. 38
2.4.1 Agent Manager . 39
2.4.2 Common Agent . 40
2.4.3 Interaction between Tivoli Dynamic Workload Broker and Common

Agent Services . 40

© Copyright IBM Corp. 2007. All rights reserved. iii

2.5 Job and resource definitions . 43
2.5.1 Job definitions . 43
2.5.2 Resource definitions . 44

2.6 Tivoli Dynamic Workload Broker User interfaces 44
2.6.1 Tivoli Dynamic Workload Broker Web Console 45
2.6.2 Command-line interface . 47
2.6.3 Job Brokering Definition Console . 49

2.7 Security features . 51
2.7.1 Encrypted communication. 52
2.7.2 Firewall support . 59
2.7.3 Authentication mechanism . 59
2.7.4 Authorization roles . 64

2.8 Tivoli Dynamic Workload Broker deployment scenarios 66
2.8.1 Location of main Tivoli Dynamic Workload Broker components 66
2.8.2 DB2 Universal Database. 67
2.8.3 WebSphere Application Server . 67
2.8.4 Tivoli Dynamic Workload Broker server . 67
2.8.5 Tivoli Dynamic Workload Broker Web Console 68
2.8.6 Tivoli Dynamic Workload Job Brokering Definition console 68
2.8.7 Tivoli Agent Manager . 68
2.8.8 Tivoli Common Agents . 68
2.8.9 Tivoli Dynamic Workload Broker agent . 69
2.8.10 Tivoli Dynamic Workload Broker standalone solution 69
2.8.11 Common usage of Tivoli Workload Scheduler and Tivoli Dynamic

Workload Broker . 70
2.8.12 Setting up monitoring for Tivoli Dynamic Workload Broker 72

2.9 Physical location of Tivoli Dynamic Workload Broker’s components 73
2.9.1 Locations of server components . 73
2.9.2 Locations of agent components . 77
2.9.3 Location of certificates and private keys . 77

Chapter 3. Tivoli Dynamic Workload Broker installation 81
3.1 Introduction . 82
3.2 Planning for installation . 83

3.2.1 Tivoli Dynamic Workload Broker software prerequisites. 83
3.2.2 Tivoli Dynamic Workload Broker hardware prerequisites 86
3.2.3 Tivoli Dynamic Workload Broker network . 89

3.3 Installation . 91
3.3.1 Choosing the installation method . 92
3.3.2 Installing the Tivoli Dynamic Workload Broker server with the installation

wizard . 95
3.3.3 Installing the Tivoli Dynamic Workload Broker Web Console 124

iv Getting Started with Tivoli Dynamic Workload Broker Version 1.1

3.3.4 Installing the Tivoli Dynamic Workload Broker Job Brokering Definition
Console. 134

3.3.5 Installing the IBM Tivoli Dynamic Workload Broker agent 135
3.4 Uninstallation. 137

Chapter 4. Working with Tivoli Dynamic Workload Broker 141
4.1 Computers. 142

4.1.1 Resources . 142
4.1.2 Tivoli Dynamic Workload Broker Tivoli Workload Scheduler Agent

plug-in . 143
4.2 Working with jobs . 143

4.2.1 Job definitions . 143
4.2.2 JBDC, Web Console, and command-line interface. 147
4.2.3 Job submission . 149
4.2.4 Credentials for job definitions . 152
4.2.5 Tivoli Workload Scheduler and Tivoli Dynamic Workload Broker job

definitions . 152
4.2.6 Job affinity . 154

4.3 Using variables in job definitions . 155
4.3.1 Job variables . 155
4.3.2 Environment variables. 160
4.3.3 Indirect use of job variables in scripts . 161

4.4 Planning and choreography . 162
4.4.1 Considerations for Tivoli Workload Scheduler integration 163

4.5 Resource matching criteria . 167
4.5.1 Optimization objective type . 168
4.5.2 Optimization Enterprise Workload Manager type 169
4.5.3 Resources . 169
4.5.4 Related resources . 170

4.6 Monitoring computers and jobs . 171

Chapter 5. Advanced guide to Tivoli Dynamic Workload Broker 175
5.1 Tivoli Workload Scheduler migration to Tivoli Dynamic Workload Broker176

5.1.1 Initial Tivoli Workload Scheduler job definition and job stream 177
5.1.2 Situation after migration to Tivoli Dynamic Workload Broker 179
5.1.3 Create logical resources for the new job definitions 181
5.1.4 Extract Tivoli Workload Scheduler job definitions and job streams. 182
5.1.5 Import Tivoli Workload Scheduler job definitions and job streams to

Tivoli Dynamic Workload Broker. 184
5.1.6 Export Tivoli Workload Scheduler job definitions and job streams to

Tivoli Dynamic Workload Broker. 189
5.2 Job Submission Description Language reference. 192

5.2.1 Category element . 193

 Contents v

5.2.2 Variable element . 194
5.2.3 Application element. 195
5.2.4 Execution element. 195
5.2.5 J2EE element . 197
5.2.6 Resource element . 200
5.2.7 Related resources element . 210
5.2.8 Optimization element . 213
5.2.9 Scheduling element. 215

5.3 Tivoli Dynamic Workload Broker user authorization and authentication . 218
5.3.1 Enabling global security . 220
5.3.2 Tivoli Dynamic Workload Broker security roles. 223
5.3.3 Mapping security roles to users or groups 226
5.3.4 Manage users for Tivoli Dynamic Workload Broker Web Console . 227
5.3.5 Add users to Tivoli Dynamic Workload Broker Web Console roles 228

5.4 Command-line interface . 232
5.4.1 jobstore . 234
5.4.2 jobsubmit . 238
5.4.3 jobgetexecutionlog . 239
5.4.4 jobcancel . 240
5.4.5 jobdetails . 242
5.4.6 jobquery . 243
5.4.7 movehistorydata . 245

Chapter 6. High availability and recovery considerations. 247
6.1 High-availability scenario. 248
6.2 IBM Tivoli System Automation for Multiplatforms 248

6.2.1 How Tivoli System Automation works . 249
6.2.2 Installing and configuring Tivoli System Automation. 252

6.3 Installing and configuring DB2. 255
6.3.1 Installation DB2 UDB . 256
6.3.2 Configuration of DB2 for Tivoli System Automation 260

6.4 Installing and configuring WebSphere Application Server 263
6.4.1 Installing WebSphere Application Server . 263
6.4.2 Installing WebSphere Application Server patch 269
6.4.3 Set up WebSphere Application Server on Tivoli System Automation . .

271
6.5 Installing and configuring Tivoli Dynamic Workload Broker 271

6.5.1 Installing Tivoli Dynamic Workload Broker 271
6.5.2 Setting up Tivoli Dynamic Workload Broker server on Tivoli System

Automation . 277

vi Getting Started with Tivoli Dynamic Workload Broker Version 1.1

6.6 Testing the environment . 280

Chapter 7. Performance optimization . 281
7.1 Configuration parameters . 282
7.2 Performance configuration parameters on server 282

7.2.1 Job Dispatcher . 282
7.2.2 Resource Advisor . 286

7.3 Performance configuration parameters on the agent 289
7.3.1 ResourceAdvisorAgentConfig . 289
7.3.2 JobExecutionAgentConfig. 290

7.4 Best practices . 291
7.4.1 Server . 291
7.4.2 Agent. 294
7.4.3 A simple scenario for this book . 295

7.5 Scalability tests . 297
7.5.1 Scenario for the Tivoli Dynamic Workload Broker V1.2 298

Chapter 8. Integration with other IBM Tivoli products 301
8.1 Our Tivoli Dynamic Workload Broker integration environment 302
8.2 Integration with IBM Tivoli Change and Configuration Management Database

(CCMDB) . 302
8.2.1 Tivoli Change and Configuration Management configuration 305
8.2.2 Integration steps . 305

8.3 Integration with IBM Tivoli Provisioning Manager 313
8.3.1 Tivoli Provisioning Manager configuration 314
8.3.2 Integration steps . 314

8.4 Integration with IBM Tivoli Monitoring . 325
8.4.1 Tivoli Monitoring components and terminology. 325
8.4.2 Mechanism of integration of Tivoli Dynamic Workload Broker with Tivoli

Monitoring . 328
8.4.3 Pre-integration tasks . 330
8.4.4 Integration steps . 330
8.4.5 Changing the integration criteria at a later time 336
8.4.6 Configuring Universal Agent to accept a FILE data provider 337
8.4.7 Viewing the application in the Tivoli Enterprise Portal 344
8.4.8 Creating a view on monitored data . 346
8.4.9 Setting up thresholds . 349
8.4.10 Creating situations . 355
8.4.11 Setting up automatic corrective action . 357
8.4.12 Advanced monitoring of Tivoli Dynamic Workload Broker 358
8.4.13 Default values and file locations . 391

 Contents vii

Chapter 9. Interacting with Tivoli Dynamic Workload Broker using the Web
services interface . 395

9.1 Why you would use the Web services interface 396
9.2 Web services concepts . 397

9.2.1 Brief description of Web services . 397
9.3 Deeper view of jobs in Tivoli Dynamic Workload Broker. 400

9.3.1 Job definitions . 400
9.3.2 Job life cycle within Tivoli Dynamic Workload Broker 401
9.3.3 Client interactions . 402

9.4 Web services interfaces provided by the Tivoli Dynamic Workload Broker
server . 403

9.4.1 How to read this section . 404
9.4.2 Job Factory service . 405
9.4.3 Job service . 416
9.4.4 Job Definition Management service . 421
9.4.5 Important terms related to job definitions . 430
9.4.6 Getting notified about job state changes. 431

9.5 Creating the sample client. 435
9.5.1 Development tools used in our scenarios . 436
9.5.2 Creating the sample client using Rational Application Developer . . 436
9.5.3 Creating the sample client using Eclipse . 462
9.5.4 Running the sample client from the command line 485
9.5.5 Necessary Java run time and JAR files for running the client from the

command line . 485

Chapter 10. Troubleshooting . 487
10.1 Troubleshooting the Tivoli Dynamic Workload Broker installation 488

10.1.1 Tivoli Dynamic Workoad Broker Web Console and ISC logs 491
10.1.2 Activating traces for the Tivoli Dynamic Workload Broker server . 492
10.1.3 Activatinge traces for the Tivoli Dynamic Workload Broker Web

Console. 493
10.1.4 Diagnose failure dialogue - using the step list. 493
10.1.5 Tivoli Dynamic Workload Broker server troubleshooting 496
10.1.6 Tivoli Dynamic Workoad Broker agent installation troubleshooting497
10.1.7 JBDC installation troubleshooting . 498
10.1.8 JBDC-specific problems . 498

10.2 DB2 troubleshooting . 499
10.2.1 Diagnostic tools. 499
10.2.2 Approach to troubleshooting DB2 . 500
10.2.3 Sample DB2 troubleshooting scenario . 502

10.3 Troubleshooting the integration with IBM Tivoli Monitoring. 504
10.3.1 Log and trace files location . 505
10.3.2 Problems with running the integration script on Windows. 505

viii Getting Started with Tivoli Dynamic Workload Broker Version 1.1

10.3.3 Wrongly interpreted characters in log file path on Windows 506
10.3.4 Cannot specify multiple event types together with parameters. . . 506
10.3.5 Cannot remove unwanted event types . 507
10.3.6 Tivoli Dynamic Workload Broker log file not created. 508
10.3.7 Application for log file monitoring is not visible in Tivoli Enterprise Portal

(out-of-box integration) . 509
10.3.8 Application for custom script monitoring is not visible in Tivoli

Enterprise Portal . 510
10.4 Troubleshooting the integration with Enterprise Workload Manager. . . 512

10.4.1 Log and trace files location . 512
10.4.2 Log and trace enablement . 512

10.5 Troubleshooting the integration with Tivoli Workload Scheduler. 512
10.5.1 Log and trace files location . 512
10.5.2 Debugging feature. 513
10.5.3 Unsupported functions . 513

10.6 Troubleshooting the integration with CCMDB . 513
10.6.1 Log and trace files location . 513

Chapter 11. Managing Tivoli Dynamic Workload Broker jobs using Tivoli
Workload Scheduler for z/OS end-to-end 515

11.1 Introduction . 517
11.1.1 Integration benefits . 518
11.1.2 Terminology . 518

11.2 Tivoli Dynamic Workload Broker and Tivoli Workload Scheduler for z/OS
end-to-end architecture . 519

11.2.1 Tivoli Workload Scheduler for z/OS end-to-end scheduling 519
11.2.2 Tivoli Dynamic Workload Broker scheduling architecture 527
11.2.3 Integrated Tivoli Dynamic Workload Broker and Tivoli Workload

Scheduler for z/OS end-to-end architecture 529
11.2.4 Examples of integration architectures . 532
11.2.5 High availability and recovery integration 535

11.3 Installation and configuration considerations . 539
11.3.1 Product installation and configuration . 540
11.3.2 Overview of specific installation and customization steps. 540
11.3.3 Plan your configuration . 541
11.3.4 Configure network connectivity . 542
11.3.5 Installing and configuring the Tivoli Workload Scheduler agent . . 544
11.3.6 Create Tivoli Workload Scheduler for z/OS end-to-end 548
11.3.7 Activate the Tivoli Workload Scheduler for z/OS end-to-end

workstation . 550
11.3.8 Verify integration . 552

11.4 Planning and choreography . 552
11.4.1 Integration benefits . 553

 Contents ix

11.4.2 Allocation of jobs to computer resources 554
11.4.3 Job definition user interfaces . 555
11.4.4 Defining job and job stream definitions . 557
11.4.5 Moving existing jobs between the environments. 560

11.5 Planning and choreography advanced topics . 565
11.5.1 Logical resource usage and scope . 565
11.5.2 Sample resource usage scenario . 568
11.5.3 Serializing access to resources. 577
11.5.4 Job affinity definition . 580
11.5.5 Job recovery and restart . 582
11.5.6 Job tailoring using variables . 586
11.5.7 Sample variables usage scenario . 589

11.6 Monitoring and control. 602
11.6.1 Monitoring and control of infrastructure components 603
11.6.2 Monitoring and control of the workload being scheduled 608

11.7 Terminology. 622
11.7.1 Tivoli Workload Scheduler for z/OS end-to-end terminology 623
11.7.2 Tivoli Dynamic Workload Broker terminology 625

Appendix A. Using Tivoli Dynamic Workload Broker with Enterprise
Workload Manager . 627

IBM Enterprise Workload Manager . 628
Planning for Tivoli Dynamic Workload Broker/Enterprise Workload Manager

interaction . 629
Platform support . 629
Communication between products . 630

Enterprise Workload Manager load balancing recommendations in Tivoli Dynamic
Workload Broker. 631

Starting the interaction . 632
Turning on Enterprise Workload Manager load balancing 633
Enabling Tivoli Dynamic Workload Broker to receive Enterprise Workload

Manager Load Balancing weights . 633
Enabling ARM on the Tivoli Dynamic Workload Broker agent 636
Enterprise Workload Manager classification of Tivoli Dynamic Workload Broker

jobs . 637
Create the Enterprise Workload Manager policy 639
Tivoli Dynamic Workload Broker/Enterprise Workload Manager joint

classification criteria . 643
Create Enterprise Workload Manager transactions classified by Tivoli

Dynamic Workload Broker application name 644
Create Enterprise Workload Manager transactions classified by job name646
Create Enterprise Workload Manager transactions by categories 650

x Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Confirming interaction from Enterprise Workload Manager Control Center . . 653
Application level load balancing . 654

Enterprise Workload Manager resource allocation for meeting job goals . . . 656

Appendix B. Default ports used by Tivoli Dynamic Workload Broker . . 657
Ports used by Tivoli Dynamic Workload Broker server 658
Ports used by Agent Manager . 658
Ports used by DB2 server . 659
Ports used by Integrated Solutions Console . 659

Ports used by Integrated Solutions Console . 660
Ports used by WebSphere Application Server hosting the Integrated Solutions

Console . 660
Ports used by Common Agent . 661

Abbreviations and acronyms . 663

Related publications . 665
IBM Redbooks . 665
Other publications . 665
Online resources . 666
How to get IBM Redbooks . 666
Help from IBM . 667

 Contents xi

xii Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information about the products and services currently available in your
area. Any reference to an IBM product, program, or service is not intended to state or imply that only that
IBM product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.

© Copyright IBM Corp. 2007. All rights reserved. xiii

Trademarks

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

Redbooks (logo) ®
iSeries®
pSeries®
z/OS®
z/VM®
zSeries®
AIX 5L™
AIX®
Cloudscape™
Collation®
CICS®
Domino®

DB2 Universal Database™
DB2®
Enterprise Workload Manager™
Geographically Dispersed

Parallel Sysplex™
HACMP™
IBM®
LoadLeveler®
Lotus®
MVS™
NetView®
OS/400®

Parallel Sysplex®
Rational®
Redbooks®
S/390®
Tivoli Enterprise™
Tivoli Enterprise Console®
Tivoli Management

Environment®
Tivoli®
TME®
WebSphere®

The following terms are trademarks of other companies:

SAP, and SAP logos are trademarks or registered trademarks of SAP AG in Germany and in several other
countries.

Oracle, JD Edwards, PeopleSoft, Siebel, and TopLink are registered trademarks of Oracle Corporation
and/or its affiliates.

NOW, and the Network Appliance logo are trademarks or registered trademarks of Network Appliance, Inc.
in the U.S. and other countries.

ITIL is a registered trademark, and a registered community trademark of the Office of Government
Commerce, and is registered in the U.S. Patent and Trademark Office.

EJB, Java, JDBC, JDK, JNI, JRE, J2EE, Solaris, and all Java-based trademarks are trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows Server, Windows, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

xiv Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Preface

IBM® Tivoli® Dynamic Workload Broker (Tivoli Dynamic Workload Broker) is a
key element in a comprehensive, on demand, Tivoli workload automation
portfolio. It can use dynamic resource information as well as recommendations
from other products to determine the best systems to which new jobs will be
dispatched.

This IBM Redbooks® publication documents the architecture, installation and
customization, operation best practices, performance optimization, high
availability considerations, Web Services interface, and troubleshooting of Tivoli
Dynamic Workload Broker V1.1.

In addition, we cover integration scenarios with other IBM products, such as IBM
Tivoli Workload Scheduler, IBM Tivoli Provisioning Manager, IBM Tivoli Change
and Configuration Management Database, IBM Tivoli Monitoring, Tivoli
Enterprise™ Portal, and IBM Enterprise Workload Manager™.

Finally, we discuss Tivoli Dynamic Workload Broker operation in a IBM Tivoli
Workload Scheduler for a z/OS® end-to-end environment.

Clients and Tivoli professionals who are responsible for installing, administering,
maintaining, or using IBM Tivoli Dynamic Workload Broker will find this book a
major reference.

The team that wrote this IBM Redbook

This IBM Redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Austin Center.

Vasfi Gucer is a Project Leader at the ITSO, Austin Center. He worked for IBM
Turkey for 10 years and has been with the ITSO Austin Center since January
1999. He has more than 12 years of experience in the areas of systems
management, networking hardware, and software on mainframe and distributed
platforms. He has worked on various Tivoli customer projects as a Systems
Architect and Technical Project Manager. He writes extensively and teaches IBM
classes worldwide on Tivoli software. He is also an IBM Certified Senior IT
Specialist.

Jackie Biggs-Finstad has worked with Tivoli Workload Scheduler on UNIX®
and Windows® since 1998. She has held various positions while working with

© Copyright IBM Corp. 2007. All rights reserved. xv

Tivoli Workload Scheduler Consultant, Systems Engineer, and Product
Evangelist. Jackie is currently a Customer Solutions Engineer on the Software
Advanced Technologies (SWAT) team, where she provides on-site technical
support to the technical sales teams on Proof of Concepts for IBM Tivoli
Workload Automation solutions.

Alfredo Cappariello is a member of the development team for the Tivoli
Workload Scheduler products in the IBM SWG Rome Lab, Italy. He joined the
team in 2004 after some years of experience as a Software Engineer in the Tivoli
monitoring area. Alfredo's area of expertise includes installation and deployment.
Before joining IBM he worked in the nuclear engineer field as Researcher.

Matt Dufner is a member of Level 2 Support for Tivoli Workload Scheduler in
Austin, Texas. Before working in technical support, Matt worked for six years on
various Tivoli projects in a software verification role. Before working in
verification, he worked as a contractor for IBM, supporting the IBM AIX®
operating system for two years.

Clinton Easterling has been working with Tivoli Workload Scheduler for the past
six years. Currently, he is the Technical Lead Engineer for the L2 Support team in
Austin, Texas. Clint is a Tivoli Workload Scheduler Certified Deployment
Specialist and he is also ITIL® certified. Before working for Tivoli, Clint worked for
IBM AIX L2 Support and served eight years in the U.S. Military. Clint's areas of
expertise include installation and tuning, non-defect problem determination, and
Tivoli Workload Scheduler for Applications PeopleSoft® and SAP®. Clint is also
a member of the Tivoli Workload Scheduler Users Conference (ASAP) group and
technical presenter at conferences such as Tivoli Technical Users Conference
and ASAP.

Martin Lisy has been working for IBM since 1995. He is a Systems Management
Specialist in the area of the Tivoli Enterprise Management Solutions. Martin has
worked on various Tivoli customer projects as the Solution Designer and
Implementor. His area of expertise is Tivoli Workload Scheduler, for which he has
created various scripting functions that enhance the product capabilities. Martin
is an IBM Certified Deployment Professional for Tivoli Workload Scheduler V8.2
and V8.3 and an IBM Certified Deployment Professional for Tivoli Enterprise
Console® V3.9. He works with IBM enablement teams in the area of Workload
Management, where he is focusing on requirements definitions for new releases
of Tivoli Workload Scheduler and Tivoli Dynamic Workload Broker. He also
participates in Tivoli certification tests development. Martin holds an engineering
degree in Computer Science from VSB-Technical University of Ostrava.

Tony Liu is an IBM Certified Consulting IT Specialist with a speciality in the IBM
workload automaton portfilio of products, He has a 29-year career with IBM. He
has worked with clients and customers in the Western Region of North America.
He is an IBM Certified Deployment Professional - Tivoli Workload Scheduler, is

xvi Getting Started with Tivoli Dynamic Workload Broker Version 1.1

ITIL Foundation Certified, and has a Linux® Professional Institute LPIC-1
Certification.

Joe Lopez has worked as an IBM Tivoli Workload Scheduler L2 Staff Software
Engineer since 2002. He is certified in Tivoli Workload Scheduler V8.2, V8.3, and
ITIL. Before this position, he worked as an IBM - Certified Lotus® Professional
and Tivoli Business Partner Account Manager for three years.

Andrea Olivier is currently on the Level 2 Support Team for Tivoli Workload
Scheduler in Austin, Texas. She has been with Tivoli Support for seven years and
is ITIL Foundation Certified. Her previous Tivoli product experiences include
Tivoli Framework and IBM Tivoli Composite Application Manager for Response
Time Tracking. Prior to Tivoli Support, Andrea worked for IBM AIX Level 2
Support for four years.

Michael Petersen is an Advisory Software Engineer supporting IBM Tivoli
Workload Scheduler. Mike has experience in software application development
and test for products as well as internal applications. He has assisted customers
as an international consultant for IBM library management products. He
participated in the IBM Faculty Loan Program. Mike has a BS degree from
Purdue University in Mathematics with a double major in Computer Science, an
MS degree from Purdue University in Computer Science, and an MBA from
Marist College.

Geoff Pusey is a Senior IT Specialist and has been with Tivoli since January
1998 when Unison Software was acquired by Tivoli Systems. Geoff has been
working with the Tivoli Workload Scheduling product for the last thirteen years in
a consultancy role. This is in the customer training, implementation, and
customization of Tivoli Workload Scheduler, which involved creating customized
scripts to generate specific reports or to enhance Tivoli Workload Scheduler with
a function that is not in the current product.

Bosse Waenglund is a Senior IT Specialist in IBM Global Technology Services
in Copenhagen, Denmark. He has 17 years of experience working with IBM Tivoli
Workload Scheduler for z/OS. Bosse does consultation and services at customer
sites, as well as IBM Tivoli Workload Scheduler for z/OS training. He has worked
at IBM for 19 years. His areas of expertise include IBM Tivoli Workload
Scheduler for z/OS, IBM Tivoli Dynamic Workload Broker, Geographically
Dispersed Parallel Sysplex™, z/OS Workload Manager, and z/OS.

John Welsh is a certified IT Specialist from Atlanta, Georgia. He works in the
IBM TechWorks and has been with Tivoli/IBM since 1997, when Unison Software
was acquired by Tivoli Systems. He has worked with the IBM Tivoli Workload
Scheduling/Maestro product since 1996. John was also a software developer for
over eight years at United Technologies Hamilton Standard.

 Preface xvii

Thanks to the following people for their contributions to this project:

Arzu Gucer
International Technical Support Organization, Austin Center

Octavian Lascu, Julie Czubik
International Technical Support Organization, Poughkeepsie Center

Finn Bastrup Knudsen
IBM Denmark

Angelina Ascone, Fabio Benedetti, Umberto Caselli, Paolo Deidda, Xavier
Giannakopoulos, Daniela Giri, Antonella Godino, Giulio Santoli, Marco
Sebastiani, Tullio Tancredi, Paola Di Vitantonio
IBM Italy

Alan Bivens, Mark Fantacone, Bob Hitson, David Oswald
IBM USA

The team would like to express special thanks to Creighton Hicks, Warren Gill,
and Edson Manoel from the IBM USA Tivoli SWAT Team for their contribution in
customizing the Tivoli Sytem Automation and Tivoli Change and Configuration
Management environments.

Become a published author

Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You will have the opportunity to team with IBM
technical professionals, Business Partners, and Clients.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

xviii Getting Started with Tivoli Dynamic Workload Broker Version 1.1

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html

We want our IBM Redbooks to be as helpful as possible. Send us your
comments about this or other Redbooks in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an e-mail to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

 Preface xix

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

xx Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Chapter 1. Tivoli Dynamic Workload
Broker overview

Tivoli Dynamic Workload Broker is a key element in a comprehensive, on
demand, Tivoli Workload Automation family portfolio. In this chapter we cover the
following topics:

� “Market trends and directions” on page 2
� “Business solutions” on page 3
� “Major functions of Tivoli Dynamic Workload Broker” on page 5
� “Business scenarios” on page 7
� “Technical overview” on page 16

1

© Copyright IBM Corp. 2007. All rights reserved. 1

1.1 Market trends and directions

The number of organizations replacing manual, time-consuming workload tasks
with automated capabilities continues to increase at a rapid pace. This is done
with good reason. When performed manually, these tasks can quickly overwhelm
IT staff, increase overall costs, and have a negative effect on service level
agreements (SLA).

The adoption of Grid computing for business applications is expanding in various
sectors such as insurance, manufacturing, and financial industries. The Grid
computing environment is a complex environment for business solutions that
require workload automation, job scheduling, and processing. It is complex to
address the need for a central point of control to prioritize, manage, and integrate
workloads with data for enterprise jobs. In addition to this complexity is the
requirement to match computing resources to workload requests in a dynamic
fashion without human intervention. Accuracy, efficiency, and flexibility are
difficult to maintain.

The market is evolving into a virtual computing environment where clustering,
scheduling, and managing workload automation are needed within this virtual
environment. Service execution becomes important for delivering operational
services to the IT infrastructure and the enterprise. Traditional management tools
such as a job scheduler, load balancer. and cluster manager can automate some
of these activities. However, these tools leave IT organizations without the ability
to automate, dynamically manage, or optimize service execution activities
end-to-end, across the enterprise.

While the service execution process is straightforward, it is exceptionally difficult
to manage. Management tools must be able to support business processes,
enable planned changes to business processes and the IT infrastructure, adapt
to unplanned changes in the IT infrastructure, maximize workload velocity,
optimize the utilization of IT resources, adhere to stringent SLAs, and ensure
compliance. Additional difficulties arise from trying to manage complex,
heterogeneous applications and systems as well as processes across
organizational silos. Finally, IT organizations that are already limited in resources
must somehow deal with a growing number of mixed, interdependent, and often
unpredictable workloads that need to be scheduled in real-time, near-real-time,
or batch modes.

Enterprises are embracing the service-oriented architecture (SOA) common
programming methodology to provide business applications across
heterogeneous platforms, operating systems, and data sources. There is the
need to provide a batch-on-grid solution to improve business efficiency, utilize
resources, reduce costs, and achieve service level agreements for job execution.

2 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Workload automation solutions should be supported by SOA, an open framework
that enables IT organizations to easily build, deploy, and integrate business and
IT workload processes. SOA can be key to dynamically reconfigure the delivery
of services according to business demand; helping to foster innovation and better
align IT to business goals. SOA also enables open interfacing for the simplified
integration of workload automation into the application and systems
management paradigms.

As the market evolves, the requirements for a job scheduling solution evolve too.
The traditional scheduling that uses a calendar-based production workload
planning and batch job execution is changing. Business needs for new
scheduling requirements for platform or application agnostic scheduling, a single
consolidated view of all scheduling points, event-based scheduling, and the use
of virtualization with Grid computing technology exists today. These requirements
will continue to evolve into a service-based scheduling. These requirements
follow a process-driven model within a dynamic topology that uses
service-oriented architecture integration or adapters based on standards such as
Web services.

These challenges can be effectively addressed by a dynamic end-to-end
workload automation solution that provides a virtual point of control to implement
standardized service execution processes and support a SOA. Solutions should
be designed to respond quickly to service demands and changes in the IT
environment, balance computing costs and service levels, and improve utilization
of IT capacity. The right management tools should be able to:

� Support business processes and policies.
� Enable planned changes to business processes and the IT infrastructure.
� Adapt to unplanned incidences in the IT infrastructure.
� Maximize workload velocity.
� Optimize the utilization of IT resources.
� Adhere to stringent service level agreements (SLAs).
� Ensure adherence to compliance and governance requirements.

1.2 Business solutions

Automating resource-intensive tasks like production workload scheduling will
help reduce IT management complexity and lower your overall total cost of
ownership (TCO). End-to-end workload automation helps you manage and
coordinate up to hundreds of thousands of workloads by executing the correct
workload at the correct time and in the correct sequence. By automating
workloads, you can significantly increase throughput into existing IT resources
while meeting strict service level agreements (SLAs) and easing compliance
requirements. So as you automate repeatable processes, you can capture best

 Chapter 1. Tivoli Dynamic Workload Broker overview 3

practices and expertise, and then you can execute processes in a consistent,
error-free manner.

The benefits of this solution provide an efficiency to business processes for your
enterprise. The results are increasing customer satisfaction, reducing or
eliminating complaints from business partners, improving the brand or company
image, increasing sales that positively impact the bottom line, and allowing the
business to be more competitive or flexible in your industry.

IBM Tivoli workload automation solutions enable you to centrally manage IT
workloads with complex dependencies that span multiple applications, systems,
and business units, which include mainframe, distributed, Grid, and
high-performance computing environments. As a result, you can dynamically
route workloads to the best available resources, in real time and in line with
changing business demands. IBM Tivoli Dynamic Workload Broker is a product
solution for this dynamic workload requirement.

The Tivoli Dynamic Workload Broker eliminates the manually intensive process
of workload assignments across multiple, heterogeneous resources. It does this
by dynamically routing workloads to the best available resources as defined in a
policy. The Tivoli Dynamic Workload Broker helps organizations intelligently
manage cross-enterprise workloads and resources by providing a central point to
prioritize, manage, and integrate workloads across heterogeneous operating
environments. The Tivoli Dynamic Workload Broker increases workload velocity
through existing assets, reduces labor-intensive processes by automatically
adapting workload execution to changes in the IT environment, and improves the
ability to meet stringent service level agreements. This saves time and money for
companies with stringent service level agreements on production control staff
responsible for this workload.

The Tivoli Dynamic Workload Broker optimizes the use of the IT infrastructure by
constantly analyzing your environment to maintain an up-to-date view of the
resources available. The Tivoli Dynamic Workload Broker does brokering of
workloads on heterogeneous systems to help improve operational efficiencies.
The Tivoli Dynamic Workload Broker also analyzes job requirements, evaluates
resources based on such requirements, resolves interdependencies, executes
jobs, and then monitors these jobs.

Tivoli Dynamic Workload Broker extends Tivoli workload automation capabilities
for distributed, mainframe, and end-to-end environments by providing dynamic
optimization of workload processing based on performance of the scheduling
infrastructure and workload demands. Tivoli Dynamic Workload Broker helps
enterprise customers elevate workload automation by transforming static IT
infrastructures into dynamic, virtualized environments. It provides dynamic
workload brokering to the best available resources based on existing resource

4 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

loads and available capacity to help improve operational efficiencies. This helps
maximize throughput of existing resources.

1.3 Major functions of Tivoli Dynamic Workload Broker

Tivoli Dynamic Workload Broker implements a job scheduling and brokering
infrastructure that provides the following major functions:

� Manages the automatic discovery of computers available in the scheduling
domain with their attributes.

� Manages the matching of jobs to appropriate resources based on job
requirements and resource attributes.

� Manages the job dispatching to target resources, both physical and virtual,
that are capable of running the job.

� Optimizes the use of IT resources.

� Manages resource consumption of a job based on the quantities that it is
planned to use while running.

� Optionally allocates the required quantity exclusively to the job while it is
running.

� Releases the resources as soon as the job terminates for use by other waiting
jobs.

� Uses the common agent services infrastructure to provide an agent that
simplifies the administration and deployment of the scheduling components
on the endpoint systems that are targets for the jobs.

� Provides an easy-to-use Web user interface for managing the scheduling
activities.

� Integrates seamlessly with Tivoli Workload Scheduler (8.2.1 and later) and
Tivoli Workload Scheduler for z/OS end-to-end (8.2 and later), enabling full
control from Tivoli Workload Scheduler of job submission and life cycle.

� Users are able to manage from Tivoli Workload Scheduler the
calendar-based triggering and choreography of the flow of jobs that are run by
Tivoli Dynamic Workload Broker.

� Integrates scheduling functions and services in the IBM service-oriented
architecture common programming model.

 Chapter 1. Tivoli Dynamic Workload Broker overview 5

1.3.1 IBM Tivoli workload automation portfolio

Tivoli Dynamic Workload Broker is a key element in a comprehensive, on
demand, Tivoli workload automation portfolio. The IBM Tivoli workload
automation solutions are designed to fit a wide range of enterprise requirements
and needs. The IBM Tivoli workload automation family of products allows IT
organizations to establish a virtual control point to build and automate a
consistent, predictable, and scalable service execution process across the
enterprise. These products consolidate enterprise-wide batch and
event-triggered workloads that span multiple applications and systems, helping
IT organizations efficiently control and manage cross-enterprise workloads.

The Tivoli workload automation portfolio includes:

� IBM Tivoli Workload Scheduler and IBM Tivoli Workload Scheduler for z/OS
provide advanced workload planning and choreography services, along with
extensive calendar and event-triggering services for real-time, near-real-time
and batch workloads. They include open Java™ 2 Enterprise Edition
(J2EE™) and Web services interfaces to allow IT organizations to consolidate
custom applications and services into the service execution process. They
also include IBM Tivoli Dynamic Workload Console, which provides a single,
Web-based point of control for the entire workload automation network,
including the ability to manage workloads by exception, initiate actions, and
generate reports.

Tivoli Workload Scheduler for z/OS end-to-end is an additional scheduling
feature of Tivoli Workload Scheduler and Tivoli Workload Scheduler for z/OS.
With this feature, you can use the two scheduler products together to
schedule workloads from your z/OS system and run jobs in both mainframe
and distributed environments.

� IBM Tivoli Workload Scheduler for Applications extends Tivoli Workload
Scheduler software by providing extensive awareness and interfacing to SAP,
People Soft, and Oracle® business applications. This allows IT organizations
to consolidate ERP application workloads into the service execution process.

� IBM Tivoli Dynamic Workload Broker further extends Tivoli Workload
Scheduler by matching and routing workloads to the best available resources
in an on demand manner. Dynamic brokering is based on critical workload
and critical path analysis, load requirements, IT resource availability, and
business policies.

� IBM Tivoli Workload Scheduler LoadLeveler® delivers the ideal solution for
high-performance computing environments such as financial modeling,
research, or biotechnology simulations. It can be integrated with Tivoli
Workload Scheduler networks through Tivoli Workload Scheduler for
Virtualized Data Centers to allow enterprises to consolidate high-performance
computing workloads with the service execution process.

6 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

� IBM Tivoli Workload Scheduler for Virtualized Data Centers provide
integration between IBM Tivoli Workload Scheduler and the Open Grid
Services Architecture.

1.3.2 Tivoli workload automation integration with IBM products

For additional capabilities, the Tivoli workload automation portfolio can be easily
integrated with other IBM products:

� IBM Tivoli Enterprise Portal, a Web-based operations console, provides a
high-level overview of the entire IT environment.

� IBM Tivoli System Automation for z/OS proactively manages automation, high
availability, and performance for z/OS environments.

� IBM Tivoli System Automation for Multiplatforms provides high availability for
business applications running in open environments.

� IBM Tivoli Business Systems Manager provides executive dashboards with
knowledge of key business processes and real-time service level status from
a single console.

� IBM Tivoli Service Level Advisor delivers automated support for SLAs.

� IBM Tivoli Provisioning Manager efficiently provisions and configures servers,
operating systems, middleware, applications, and network devices.

� IBM Tivoli Storage Manager automates data backup and restore functions,
supporting a broad range of platforms and storage devices, and centralizing
storage management operations.

� IBM Workload Manager for z/OS, a component of the IBM z/OS operating
system, can identify work requests based on service class definitions, sets
performance goals for service classes, and assigns specific IT resource
usage constraints to service classes.

� IBM Enterprise Workload Manager, a management product for distributed,
open systems, identifys work requests based on service class definitions,
tracks performance of work requests, and shifts computing resources as
needed to achieve specified performance goals.

� IBM Service Management is a portfolio of products, services, and solutions
that automate and manage critical IT processes and enable IT governance.

1.4 Business scenarios

Let us look at four business scenarios with requirements that describe solutions
using IBM workload automation portfolio. These scenarios consider the

 Chapter 1. Tivoli Dynamic Workload Broker overview 7

importance of service level agreements during peak periods as a key company
goal. This SLA is the contract between the user and the service provider of the
business application that articulates the objective for response time, resource
availability, and timeframe expected. The service provider uses Tivoli Dynamic
Workload Broker as a technical tool to meet the business objectives defined in
the SLA.

The Tivoli Dynamic Workload Broker product provides load balancing across a
resource pool, resource allocation provides load distribution over time, new
resources are discovered, and jobs are automatically run on these resources.
Figure 1-1 is an example of a business scenario in a dynamic computing
environment and how Tivoli Dynamic Workload Broker addresses the company’s
SLA. The Tivoli LoadLeveler product provides load balancing capabilities. A
scenario is provided to position this product to Tivoli Dynamic Workload Broker.

Figure 1-1 Business scenario: workload SLAs in dynamic computing environment

Tivoli

© 2004 IBM Corporation16

Static Scheduler

Business Application

Business Scenario: workload SLAs in dynamic computing environment

Computer Systems,
Applications and
Middleware Pool

Browse the Web
Application

SLA
Response Time < 10s
Availability 99.99%
All items prices updated by
8 AM

The Response Time
SLA target must
continue to be met also
during peak days such
as Christmas week,
Thanksgiving, and so
on.

TDWB

Load balancing
provides load
distribution across
resource pool.

Resource allocation
provides load
distribution over
time

New resources just
provisioned are
immediately
discovered

Jobs automatically
run on those
resources

Job1 Job2 Job3 Job4 Job4 Job5

Resource
Provisioned

Balanced
Resource Usage

Tivoli Dynamic
Workload Broker

Policy:
Loadbalance
Jobs on server
pool

User

8 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

The four scenarios are:

� Tivoli Workload Scheduler with Tivoli Dynamic Workload Broker

� Tivoli Workload Scheduler with Tivoli Workload Scheduler LoadLeveler

� Tivoli Workload Scheduler for z/OS end-to-end with Tivoli Dynamic Workload
Broker

� Tivoli Dynamic Workload Broker as a Web Services solution

1.4.1 Tivoli Workload Scheduler with Tivoli Dynamic Workload Broker

This scenario, which is shown in Figure 1-2, entails a small or medium size
business in the health industry. The business challenge is scheduling a series of
dependent FTP programs in a strict order. Other programs are dependent upon
one another where one or more must finish before the next series of programs
run. These programs are scheduled to run based on a certain time or day
depending on a work calendar schedule. The programs execute on a cluster of
computers arranged in a Grid computing environment of integrated and shared
data. There is a requirement to determine which computer in the Grid cluster has
the lowest utilization to run the scheduled program.

Figure 1-2 Tivoli Workload Scheduler and Tivoli Dynamic Workload Broker architecture diagram

TDWB
Server

TWS
Master domain

Master
Domain
Manager

Linux

Windows

Domain
Manager

DMA

AIX

Windows Linux AIX

DomainA TDWB

FTA1 FTA2 Agent Agent

HP

TWS Agent

Agent

Windows

 Chapter 1. Tivoli Dynamic Workload Broker overview 9

The solution would be for Tivoli Workload Scheduler to provide the planning,
executing, and monitoring of these programs. Dependent programs are
controlled by Tivoli Workload Scheduler so predecessor and successor programs
execute in the appropriate order. The programs are balanced between
computers using the Tivoli Dynamic Workload Broker during the execution
phase. Tivoli Dynamic Workload Broker is the middleware that determines which
computer has the available resources at the point in time needed to run the
program. When the program is done, the next successor program is run in the
series of predecessor/successor dependent jobs. It will then route the program
scheduled as a Tivoli Workload Scheduler job to the appropriate system with the
most available resources. This allows better resource utilization without having a
negative effect on the service level objectives.

The combined strengths of Tivoli Workload Scheduler for scheduling and Tivoli
Dynamic Workload Broker for load balancing and executing jobs allow the
software to handle this business challenge. The need for manual human
intervention to execute this process is eliminated due to the combination of Tivoli
Workload Scheduler and Tivoli Dynamic Workload Broker.

1.4.2 Tivoli Workload Scheduler and Tivoli Workload Scheduler
LoadLeveler

The scenario shown in Figure 1-3 on page 11 entails an organization in the
airline manufacturing industry. There is a need to schedule independent jobs
based on certain calendar days. Sometimes these jobs need to run in parallel,
while other times jobs are dependent to finish first before starting the next job or
series of jobs. These jobs have different priorities for resources that are available.
There is a need to define programs to run in classes that define the
characteristics associated with the type of job, such as its priority, run limits, and
resources. The management of this organization wants a central console that
has a graphical interface for the operators. These operators want an easy-to-use
interface that they can point and click to use. Security is a concern where
operators are assigned a role-based authorization to use this scheduling system.

10 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Figure 1-3 Tivoli Workload Scheduler and Tivoli Workload Scheduler LoadLeveler architecture diagram

The solution consists of the Tivoli Workload Scheduler with Tivoli Workload
Scheduler LoadLeveler. Tivoli Workload Scheduler has a job scheduling console
that provides the ease-of-use interface. The security provided in Tivoli Workload
Scheduler will provide the role-based authorization to job scheduling objects
such as jobs, calendars, workstations, and so on. The Tivoli Workload Scheduler
jobs are submitted to LoadLeveler, thought they are not necessarily executed in
the order of submission.

LoadLeveler dispatches jobs based on their priority, resource requirements, and
special instructions. For example, administrators can specify that long-running
jobs run only on off-hours and that short-running jobs be scheduled around
long-running jobs or that certain users or groups get priority. In addition, the
resources themselves can be tightly controlled. Use of individual machines can
be limited to specific times, users, or job classes or LoadLeveler can use
machines only when the keyboard and mouse are inactive.

The combined strengths of Tivoli Workload Scheduler for ease-of-use and
role-based security with the Tivoli Workload Scheduler LoadLeveler for load
balancing by priority and resources allow the software to handle these

TWS Virtual
Data Center

TWS
LoadLeveler

Server

TWS
Master domain

Master
Domain
Manager

Linux

AIX

Domain
Manager

DMA

AIX

Windows Linux AIX

DomainA TWS LoadLeveler

FTA1 FTA2 TWS
LoadLeveler

Client
Sun

TWS
LoadLeveler

Client

TWS
LoadLeveler

Client
AIX

 Chapter 1. Tivoli Dynamic Workload Broker overview 11

requirements. The combined solution provides the planning, executing, and
monitoring for running jobs that require scientific calculations.

1.4.3 Tivoli Workload Scheduler for z/OS end-to-end with Tivoli
Dynamic Workload Broker

This scenario shown in Figure 1-4 consists of a large corporation in the financial
services, communications, and health care industries. The management,
operations, and support staff are organized in a centralized job-scheduling model
so that all enterprise jobs are handled from one central organization. This
reduces system and operational complexity, which leverages IT staff skills and
knowledge. This model provides a cost-effective solution regarding the total cost
of ownership for scheduling workload handles by a centralized staff.

Figure 1-4 Tivoli Workload Scheduler for z/OS end-to-end with Tivoli Dynamic Workload Broker

Senior management has determined that the mainframe is their central platform
of choice to reduce the cost of power and cooling of computer systems. This is
part of their server consolidation initiative. They decided that the proliferation of
distributed servers is not cost effective to stay competitive in their industry.
However, they recognize the need for distributed platforms for strategic and

TWS Agent
and

TDWB
Server

TWS for z/OS End-to-end
Master domain

Master
Domain
Manager

z/OS

Domain
Manager

DMA

DomainA
AIX

zLinux TDWB

Linux

FTA1 FTA2

Windows AIX

Agent Agent Agent

WindowsLinux

12 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

necessary business processes. They determined that the mainframe will be the
central server for workload automation to complement the distributed
environment.

The corporate standard is to use the mainframe as the central platform for the
infrastructure of middleware for business process applications. The infrastructure
takes into consideration various services such as data solutions services,
security and encryption services, services oriented architecture on the
mainframe, and the implementation services for Linux-based processes.

For example, the legacy mainframe business applications and subsystems run
within the z/OS operating system. Data solution services for customer
information uses a relational database, and transaction processing is done on
the mainframe. Security and encryption services reside on the mainframe due to
the confidentiality of client data for their financial services applications. Business
applications incorporate SOA to utilize the reusable processes on the mainframe.
Where appropriate, the SOA processes are done within the virtualization model
running on z/VM® and zLinux. These mainframe services were incorporated
within the workload automation as needed.

Senior management is committed to the virtualization of computing resources
that use z/VM and zLinux on the mainframe. The management knows it is more
cost effective to run infrastructure software in this virtual environment rather than
purchase additional hardware and software for this workload. This initiative is
used for the Tivoli workload automation portfolio.

The corporate direction for workload automation is Tivoli Workload Scheduler for
z/OS as an end-to-end solution with Tivoli Dynamic Workload Broker. The
business challenge is automating the workload balancing and job scheduling
within the distributed grid computing environment. This distributed environment
has key business applications in a grid environment. These applications use
workload load balancing to virtualize workload so that it can be divided and
moved around a dynamic IT infrastructure in a variety of UNIX, Linux, and
Windows systems. However, there are workloads that need to run in the
traditional job scheduling manner that are not dynamic or need load balancing.

The Tivoli Workload Scheduler for z/OS end-to-end solution with the staff
reorganization supports a central workload automation initiative and the
virtualization of computing resources for these business applications. In
Figure 1-4 on page 12 the architecture shows the Tivoli Workload Scheduler for
z/OS as the master domain server. It communicates to the AIX domain manager
and Fault Tolerant Agents for the traditional job scheduling in DomainA. In the
Tivoli Dynamic Workload Broker structure, it shows the zLinux Tivoli Dynamic
Workload Broker server that also acts as a Tivoli Workload Scheduler agent. The
Tivoli Dynamic Workload Broker server then does the load balancing between
the three agents (AIX, Linux, and Windows) under its control.

 Chapter 1. Tivoli Dynamic Workload Broker overview 13

1.4.4 Tivoli Dynamic Workload Broker as a Web Services solution

This scenario entails a company that sells printed materials from a catalog. This
company uses a Web-based customer interface within a supply chain to a
business partner that manufactures the customer-ordered product. They receive
orders over the Web that starts a process of designing a custom product for their
customer and finally sending this order to the factory to manufacture this
customer’s product. The product is then shipped from the factory to the company
to be checked for quality assurance before it is delivered to the customer.

The business challenge is processing these orders dynamically across a pool of
heterogeneous hardware and operating systems. These systems are clustered
together using shared disk space. These systems consists of Linux and Windows
platforms. The problem is routing these orders automatically to a system with
resources available to process the custom order prior to sending it to the factory.

The corporate direction is to develop a Web services application for their
customers to use. This Web application starts the chain of events that
incorporate the business processes into internal systems then to their business
partner network. The management is committing application development,
infrastructure restructuring, and process re-engineering to provide better
customer service level agreements. What management needs is a middleware
tool to better utilize the hardware resources in their corporate Grid environment.

The solution incorporates the features of Tivoli Dynamic Workload Broker to
dynamically load balance this Web Services application. Once the application
developer and administrator/resource developer define the necessary jobs within
Tivoli Dynamic Workload Broker, the monitoring is done by the IT operator or
scheduling operator. The business benefit is in the execution of this application.
Once a customer submits an order via the Web, the jobs execute within this Web
Services application balanced between systems controlled by Tivoli Dynamic
Workload Broker.

14 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Figure 1-5 depicts the Tivoli Dynamic Workload Broker scheduling life-cycle flow
and the tools used by the IT staff in this new order processing and supply chain
management application. Let us step through this scheduling life-cycle flow for
this Web Services application.

1. The application developer using the Tivoli Dynamic Workload Broker Job
Definition Editor defines the jobs that are used in order processing and supply
chain management. These jobs are SOA processes such as a database
lookup of customer profile data. These jobs are stored in the Tivoli Dynamic
Workload Broker Job Repository in step 1.1.

Figure 1-5 Tivoli Dynamic Workload Broker scheduling life-cycle flow

2. The administrator or resource developer will define (using a policy) the
resources needed to run these jobs using a Web interface in step 1.2.

3. From the Web application, requests for job submissions are received in step
2.1.

4. The Enterprise Workload Manager (EWLM) is optional and provides
additional information about resources, which is suggested to Tivoli Dynamic

Define Jobs
Messages

Tivoli
Enterprise

Portal
3.3

Events

Job
Definition

Editor

1.1

Administrator /
Resource
developer

TDWB
Job

Repository

Monitor
Job

execution

Define
resources &

policies,
review jobs,

etc.

TDWB

2.1

1.2

Execution
result

EWLM

4.1

Web UI Web UI

TDWB
Resource

Repository

Mgr
database

Receive
submissions

Watch allocation
status, resource

discovery

Receive
resource

suggestion

4.2

2.2

Execute
Job

2.3

Scheduling
Operator

Agent

Application
Developer

Executio
n result

3.1 3.2

Operator
changes

Portal

IT
Operator

 Chapter 1. Tivoli Dynamic Workload Broker overview 15

Workload Broker Resource Repository to complete the dynamic state of the
environment in steps 2.2 and 2.3.

5. Tivoli Dynamic Workload Broker identifies the agent with the best available
resources to execute a job in step 3.1. Results of the job execution are
submitted back to the Tivoli Dynamic Workload Broker Resource Repository
in step 3.2.

6. If there are any exceptions or error messages, these are posted to the Tivoli
Enterprise Portal monitored by the IT Operator in step 3.3.

The allocation status or new resource discoveries are posted to the scheduling
operator via a Web interface in step 4.1. If any corrective action needs to be
done, the scheduling operator can update the Tivoli Dynamic Workload Broker
Resource Repository via step 4.2.

1.5 Technical overview

The IBM Tivoli workload automation portfolio provides a solution combining the
strengths of various products. This could be thought of as the Tivoli workload
management solution set. This technical overview describes various product
features and functions for the Tivoli workload automation portfolio for distributed
solutions.

The four products for distributed solutions reviewed in this section are Tivoli
Workload Scheduler, Tivoli Dynamic Workload Broker, Tivoli Workload Scheduler
LoadLeveler, and IBM Enterprise Workload Manager.

Note: IBM Enterprise Workload Manager is not a Tivoli branded product.

16 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Figure 1-6 IBM Tivoli workload automation portfolio

Tivoli Workload Scheduler is the centralized job scheduler that allows you to do
batch scheduling based on a calendar. You would plan the workload with
dependencies between jobs within a job stream over a future time period. This
software will then execute, also known as orchestrate, these job streams and
allow centalized management for successful or exception handling for
unsuccessful job execution. If necessary due to workload delays, deadline
scheduling can be handled by the software. Tivoli Workload Scheduler can be
specified to suppress, continue, or cancel a job or job stream processing for the
desired results.

Tivoli Dynamic Workload Broker manages the workload submitted to it based on
a resource allocation policy. A policy is defined by the workload administrator by
criteria of available resources. The Tivoli Dynamic Workload Broker server
software determines what hardware has the available resources required by the
job. Clustered systems pooled together have Tivoli Dynamic Workload Broker
agents that communicate with the server. These agents automatically detect the
current state of resources. The server then determines the system with the agent

IBM Software Group | Tivoli software

Batch scheduling,
calendaring

Workload planning

Orchestration of jobs

Centralized systems
management

Deadline scheduling

Enterprise
Workload
Manager

LoadLeveler
Dynamic
Workload
Broker

Workload
Scheduler

Manages jobs across
compute nodes

Parallel job scheduling

Load balancing

Resource metering

Job monitoring and
control

Tivoli workload automation portfolio for distributed solutions

Manages workload
based on resource
allocation policy

Workload is defined by the
requirements of the job

Jobs are assigned based
on policy

Resource pools are
automatically detected

Allocates resources
in real time

Meet business goals
by policy

Service contracts

QoS enforcement

Thread level priorities

Execution monitoring

 Chapter 1. Tivoli Dynamic Workload Broker overview 17

that has the resources based on the policy requirements for the job. The job is
assigned and run on this resource. When completed, the agent communicates
back to the server the job status.

Tivoli Workload Scheduler LoadLeveler (or Tivoli LoadLeveler) is a parallel
scheduling system that matches each job's processing needs and priority with
available resources and special instructions for maximum resource utilization. It
can track the total resources used by each serial or parallel job and offers several
reporting options to track jobs and utilization by user, group, account, or type over
a specified time period. LoadLeveler offers job checkpointing and suspension
with optional job cancellation, hold, and re-queue. These capabilities provide
great flexibility in defining real-time job and resource priority control. It delivers
tight control of resources so that it can limit the use of individual machines to
specific times, users, or job classes, or can use machines only when the
keyboard and mouse are inactive. Tivoli LoadLeveler also provides a single point
of control for effective workload management, offers detailed accounting of
system utilization for tracking or chargeback, and supports high availability
configurations.

Enterprise Workload Manager is an implementation of policy-based performance
management. The scope of management is a set of servers that you logically
group into what is called an Enterprise Workload Manager Management Domain.
The set of servers included in the Management Domain has some type of
relationship, for example, the set of servers supporting a particular line of
business. The line of business may consist of multiple business processes
spread across a few servers or a thousand servers. There is a management focal
point for each Enterprise Workload Manager Management Domain, called the
Enterprise Workload Manager domain manager. The domain manager
coordinates policy actions across the servers, tracks the state of those servers,
and accumulates performance statistics on behalf of the domain.

On each server (operating system) instance in the management domain there is
a thin layer of Enterprise Workload Manager logic installed called the Enterprise
Workload Manager managed server. From one perspective the managed server
layer is positioned between applications and the operating system. The managed
server layer understands each of the supported operating systems, gathering
resource usage and delay statistics known to the operating system. A second
role of the managed server layer is to gather relevant transaction-related
statistics from middleware applications. The application middleware
implementations, such as WebSphere® Application Server, understand when a
piece of work starts and stops, and the middleware understands when a piece of
work has been routed to another server for processing, for example, when a Web
server routes a servlet request to a WebSphere Application Server.

18 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

The managed server layer dynamically constructs a server-level view describing
relationships between transaction segments known by the applications with
resource consumption data known by the operating system. A summary of this
information is periodically sent to the domain manager, where the information is
gathered together from all the servers in the Management Domain to form a
global view. See Figure 1-7.

Figure 1-7 Workload infrastructure solution scenario

IBM Software Group | Tivoli software

Workload Infrastructure Solution Scenario

2
3

1

generate_customer_price_list

The stream of work is required to execute in the
predefined order, on certain days (for example
two days before the end of each billing cycle),
and in a limited amount of time
Each task, or “job” can run on any system that
is configured with its application(s)

 Chapter 1. Tivoli Dynamic Workload Broker overview 19

Let us use a workload infrastructure solution scenario to understand how a job is
handled differently using the Tivoli workload automation portfolio for distributed
systems. The generate_customer_price_list is a stream of work made up of a
series of jobs. This stream of work has a predefined order for which the jobs are
required to run on a certain day in a limited amount of time. A job will run on a
system that is configured with the resources and data to run the application
software.

Figure 1-8 Tivoli Workload Scheduler

Tivoli Workload Scheduler orchestrates work flows with calendaring, end-to-end
dependency management, and fault tolerance. Correct dependency resolution is
ensured, and production is automated with timelines, deadlines, and control.
Each task, or job is defined to only one system, and always runs there regardless
of dynamic conditions. In this case, generate_customer_price_list::job2 will run
only on system blue2, though other blue systems could be available or could
better handle this job. Tivoli Workload Scheduler schedules

IBM Software Group | Tivoli software

Workload
Scheduler

Tivoli Workload Scheduler

2
3

1

generate_customer_price_list::job1
generate_customer_price_list::job2

generate_customer_price_list::job2 on
system blue2 after
generate_customer_price::job1

2

20 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

generate_customer_price_list:job2 to run. However, load balancing this job onto
another blue system is done by another Tivoli workload automation product
described below. See Figure 1-9.

Figure 1-9 Tivoli Dynamic Workload Broker

IBM Software Group | T ivoli software

Dynamic
W orkload
Broker

W orkload
Scheduler

Tivoli Dynamic W orkload Broker

2
3

1

generate_custom er_price_list::job1
generate_custom er_price_list::job2

generate_customer_price_list::job2 on
the best appropriate machine in pool
blue2 after
generate_customer_price_list::job1

2

 Chapter 1. Tivoli Dynamic Workload Broker overview 21

Tivoli Dynamic Workload Broker automatically discovers and chooses the best
system for executing the job, based on current system parameters such as
availability, memory, disk, and CPU utilization. These parameters are defined in a
policy used by Tivoli Dynamic Workload Broker. So when the
generate_customer_price_list::job2 is scheduled to run, the best available
system is selected from a pool of blue2 systems by the Tivoli Dynamic Workload
Broker software policy. Therefore, Tivoli Worload Scheduler can schedule this job
and Tivoli Dynamic Workload Broker determines at that time the best blue
system to run that job. See Figure 1-10.

Figure 1-10 Tivoli LoadLeveler

IBM Software Group | Tivoli software

Load
Leveler

Dynamic
Workload
Broker

Workload
Scheduler

Tivoli LoadLeveler

2
3

1

generate_customer_price_list::job1
generate_customer_price_list::job2

check_price_record2’
check_price_record2’’
check_price_record2’’’

job2::check_price_record runs on
several systems in parallel

2’

2’’

2’’’

22 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Tivoli LoadLeveler manages the complex message handling among multiple
cluster nodes that simultaneously perform computations on massively parallel
jobs. For example, generate_customer_price_list::job2 spawns three separate
jobs to check a price record. These three check_price_record jobs run in parallel
and are load balanced amongst a pool of blue2 systems under the direction of
Tivoli LoadLeveler. See Figure 1-11.

Figure 1-11 Enterprise Workload Manager

Enterprise Workload Manager ensures that the systems with critical workload
have the correct amount of system resources for high-priority applications.
Predictive advice for compute node processing is done so that resources are
made available to applications to meet service-level objectives. An important
aspect of Enterprise Workload Manager is that all data collection and
aggregation activities are driven by a common service level policy, called the
Enterprise Workload Manager Domain Policy. This policy is built by an
administrator to describe the various business processes that the domain
supports and the performance objectives for each process. In this example, the
domain policy determines that system blue2 running the check_price_record2

IBM Software Group | Tivoli software

Enterprise
Workload
Manager

Load
Leveler

Dynamic
Workload
Broker

Workload
Scheduler

Enterprise Workload Manager

2
3

1

generate_customer_price_list::job1
generate_customer_price_list::job2

check_price_record2’
check_price_record2’’
check_price_record2’’’

Assign more I/O on system blue2 to
job2::check_price_record2’’

2’

2’’

2’’’

 Chapter 1. Tivoli Dynamic Workload Broker overview 23

job needs more I/O, so the Enterprise Workload Manager then assigns additional
I/O resource.

24 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Chapter 2. Tivoli Dynamic Workload
Broker architecture

While the concepts of Tivoli Dynamic Workload Broker are easily
understandable, from the architectonical perspective Tivoli Dynamic Workload
Broker can be a complex application.

In this chapter we provide detailed descriptions of Tivoli Dynamic Workload
Broker components and interactions among them. We also describe the user
interfaces used for managing the workload across the IT environment.

We focus especially on the following topics:

� “Topological view” on page 27

� “Major server components” on page 28

� “Tivoli Dynamic Workload Broker agent” on page 34

� “Common Agent Services” on page 38

� “Job and resource definitions” on page 43

� “Tivoli Dynamic Workload Broker User interfaces” on page 44

� “Security features” on page 51

� “Tivoli Dynamic Workload Broker deployment scenarios” on page 66

2

© Copyright IBM Corp. 2007. All rights reserved. 25

� “Physical location of Tivoli Dynamic Workload Broker’s components” on
page 73

While describing the Tivoli Dynamic Workload Broker components and the other
related software, we discuss default and optional installation locations. Because
this chapter describes the Tivoli Dynamic Workload Broker architecture, we do
not list the software and hardware prerequisites. You need to be aware that Tivoli
Dynamic Workload Broker components can only be installed only on systems
that meet both hardware and software prerequisites of the product.

Furthermore, we describe the following deployment scenarios:

� Tivoli Dynamic Workload Broker standalone solution

In 2.8, “Tivoli Dynamic Workload Broker deployment scenarios” on page 66,
we discuss the possible installation locations of Tivoli Dynamic Workload
Broker components.

� Common usage of Tivoli Dynamic Workload Broker and Tivoli Workload
Scheduler (TWS) on distributed platforms

� Tivoli Dynamic Workload Broker usage with enterprise monitoring

These topics are discussed from anarchitectonical perspective. Deeper technical
scenarios are included in Chapter 8, “Integration with other IBM Tivoli products”
on page 301. A deployment scenario of Tivoli Dynamic Workload Broker
integration with Tivoli Workload Scheduler end-to-end is described in
Chapter 11, “Managing Tivoli Dynamic Workload Broker jobs using Tivoli
Workload Scheduler for z/OS end-to-end” on page 515.

26 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

2.1 Topological view

The central point of Tivoli Dynamic Workload Broker topology is a managing
server, which manages its agents. The users interact with the server through user
interfaces (also called clients).

The main purpose of Tivoli Dynamic Workload Broker server is to determine the
best available resource for running each submitted job. All of the logic necessary
for accomplishing this task is centralized on the server. After determining the best
available resource, a job is submitted to the target system utilizing the Tivoli
Dynamic Workload Broker agent. Each Tivoli Dynamic Workload Broker agent
provides several services: launches/cancels jobs, returns job outputs, returns
information about hosting system utilization (such as CPU load and memory
usage), and so on.

 Chapter 2. Tivoli Dynamic Workload Broker architecture 27

Figure 2-1 shows the Tivoli Dynamic Workload Broker’s topology.

Figure 2-1 Tivoli Dynamic Workload Broker topology

2.2 Major server components

In this section we describe the server components of Tivoli Dynamic Workload
Broker.

The Tivoli Dynamic Workload Broker server is an J2EE enterprise application
installed into the IBM WebSphere Application Server. It consists of several

28 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

WebSphere enterprise applications and uses a RDBMS as its persistent data
storage.

The core WebSphere enterprise application is named ITDWB, and from a logical
point of view is divided into the following parts:

� Resource Repository
� Resource Advisor
� Job Dispatcher
� Job Repository
� Allocation Repository

Tivoli Dynamic Workload Broker leverages the Common Agent Services (CAS) as
its server-agent communications infrastructure. Tivoli Dynamic Workload Broker
server integrates with Agent Manager, which is the server side of Common
Agent Services. The Agent Manager is a mandatory component, but the
installation location will vary depending on your architecture. Agent Manager is
an enterprise application running on the WebSphere Application Server.
Depending on the deployment scenario it can be installed either in the same
WebSphere Application Server as the Tivoli Dynamic Workload Broker server or
on another WebSphere Application Server instance that satisfies the software
prerequisites. The more detailed description of Common Agent Services is
included in 2.4, “Common Agent Services” on page 38.

Additional server components can be installed into WebSphere Application
Server, where the Tivoli Dynamic Workload Broker server resides. They are:

� Tivoli Workload Scheduler Agent (Tivoli Dynamic Workload Broker
component for integration with Tivoli Workload Scheduler — also known as
TDWB/TWS Bridge agent)

� Enterprise Workload Manager (EWLM) enablement

� Tivoli Provisioning Manager (TPM) enablement

� IBM Change and Configuration Management Database (CCMDB)
enablement

All the above listed components allow Tivoli Dynamic Workload Broker to
integrate with other products. Installation of these components is optional.

From the WebSphere Application Server perspective, only the Tivoli Workload
Scheduler Agent (TDWB/TWS Bridge agent) is a separate enterprise application.
The other integration components are installed directly into the ITDWB enterprise
application. For more information about integrating Tivoli Dynamic Workload
Broker with other products, refer to Chapter 8, “Integration with other IBM Tivoli
products” on page 301.

 Chapter 2. Tivoli Dynamic Workload Broker architecture 29

By default the TEPListener component is also installed. TEPListener is
responsible for the integration with IBM Tivoli Monitoring. This component is
responsible for the logging of defined job states into a text file. This file can be
observed by the IBM Tivoli Monitoring Universal Agent running on the same
machine as the Tivoli Dynamic Workload Broker server. The job states can be
displayed through the Tivoli Enteprise Portal. For more information about the
integration of Tivoli Dynamic Workload Broker with IBM Tivoli Monitoring, see
8.4, “Integration with IBM Tivoli Monitoring” on page 325.

Tivoli Dynamic Workload Broker V 1.1 leverages IBM DB2® as its persistent data
storage. DB2 can either reside on the same machine as Tivoli Dynamic Workload
Broker server, or can be installed on a separate system. Then default name of
the database created for Tivoli Dynamic Workload Broker server is TDWB. This
name can be changed at installation time.

Note: Tivoli Dynamic Workload Broker V 1.1 can use only DB2, but in Tivoli
Dynamic Workload Broker V 1.2 Oracle will also be supported. At the time of
publishing this book the Tivoli Dynamic Workload Broker V 1.2. was not
available. Every place that we mention DB2 as a relational database used by
Tivoli Dynamic Workload Broker components, you can also add Oracle
relational database, when related to Tivoli Dynamic Workload Broker V 1.2.

30 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

The schema of server components is shown in Figure 2-2.

Figure 2-2 Tivoli Dynamic Workload Broker server architecture

The list of default physical locations is included in 2.9, “Physical location of Tivoli
Dynamic Workload Broker’s components” on page 73.

Note: Tivoli Dynamic Workload Broker does not necessarily have to be
installed onto a fresh WebSphere Application Server. It can be added to an
existing WebSphere Application Server instance, but certain prerequisites
must be met (for instance, WebSphere Application Server version and patch
level). Before using an existing instance of WebSphere Application Server,
consult the corresponding Tivoli Dynamic Workload Broker Installation Guide
and Release Notes.

 Chapter 2. Tivoli Dynamic Workload Broker architecture 31

2.2.1 Resource Repository

The important information about the IT environment (from a job brokering
perspective) is stored in the Resource Repository. It contains the list of available
computers, defined resources, and a real-time performance of each managed
resource. This data serves as input for the Resource Advisor.

Resource definitions and relations among various types of resources and
resource groups are stored in tables within the DB2 database named TDWB.

It is also possible to import resources that are already maintained by the Change
and Configuration Management Database (CCMDB). Tivoli Dynamic Workload
Broker imports resources from the Change and Configuration Management
Database and uses them as logical resources in its environment. See 8.2,
“Integration with IBM Tivoli Change and Configuration Management Database
(CCMDB)” on page 302 for more details about this topic.

2.2.2 Resource Advisor

Resource Advisor (RA) performs job resource matching. This means that it
determines the best candidate for each job that is about to run. It uses complex
evaluation methods to determine which currently available resource has the
optimal capacity and meets all the necessary prerequisites for running a
particular job. The main logic what shall run where is computed within this
component.

In general, a heterogeneous set of resources is required to run a job. A job may
need, for instance, a certain operating system, a file system, a network, and
access to a database. A job may also request multiple instances of the same
type of a resource. Only when all requirements are simultaneously satisfied can
the job can be started.

The resource-matching process has the objective to select only the most capable
resource where to send the job. The decision is made based on different factors:

� Availability of consumable resources - Resources are logically consumed by
jobs while they are executing. The resource-matching process assigns the job
execution to capable resources only when there are a sufficient amount of
consumable resources available. During the resource-matching process the
Resource Advisor considers that many different concurrent jobs may request
a quantity of the same consumable attribute at the same time.

� Resource selection policies - The user can specify a resource selection policy
that is applied to all capable targets. The user can specify additional criteria
for the best fitting resources, such as CPU utilization, available physical

32 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

memory, and so on. By default, the resource selection policy of each job
indicates the best resource that runs the minimum of jobs.

� Workload distribution process - The job with higher priority is privileged for the
assignment of available resources. Prioritization is considered only when
multiple jobs are competing for the same limited consumable resources.

2.2.3 Job Dispatcher

Job Dispatcher is responsible for managing requests for job submissions. It
extracts resource requirements of the job, and passes them to the Resource
Advisor. The resource requirements get converted into resource allocation
requests. After identifying the best-fitting resource, Job Dispatcher submits the
job to that resource. At this moment Job Dispatcher manages the job’s life cycle.
Through its agent counterpart (called Job Execution Agent), the Job Dispatcher
monitors the state of the job, gets the job’s status, and interacts with the job
based on user inputs — either displays the job’s stdout or cancels the job on the
user’s request.

2.2.4 Job Repository

The Job Repository keeps three types of data:

� Job definitions

Job definitions that were created through:

– Tivoli Dynamic Workload Broker Web Console

– Job Brokering Definition Console

– Imported through command-line interface from a JSDL file

– Imported through the direct Web service invocation (custom application)

� Job instances

Job instances resulting from:

– Jobs submitted from the Tivoli Dynamic Workload Broker Web Console

– Jobs submitted to the Tivoli Dynamic Workload Broker from Tivoli
Workload Scheduler

– Jobs submitted to the Tivoli Dynamic Workload Broker through the
command-line interface

Note: For more information about job definitions see 2.5.1, “Job
definitions” on page 43.

 Chapter 2. Tivoli Dynamic Workload Broker architecture 33

� Historical data

Historical data describing how the previous job instances ran.

The Job repository is physically represented as a couple of tables within the DB/2
database.

2.2.5 Allocation Repository

The Allocation Repository keeps data about the current resources’ allocation.
The data within Allocation Repository are maintained by the Resource Advisor.

The allocation repository is used to store the identifiers of the resources matched
for a job. The quantities of consumed resources are kept in a cache. When the
job terminates for any reason the allocation information is removed from the
allocation repository.

2.3 Tivoli Dynamic Workload Broker agent

The Tivoli Dynamic Workload Broker agent is responsible for handling requests
incoming from the server.

The Tivoli Dynamic Workload Broker agent runs as a subagent of the Common
Agent. This term is explained in 2.4, “Common Agent Services” on page 38. The
Tivoli Dynamic Workload Broker agent leverages the Common Agent Services
architecture. For the understanding of the Tivoli Dynamic Workload Broker agent
functionality it is not necessary to understand Common Agent Services at this
point.

For an overview of Common Agent Services see 2.4, “Common Agent Services”
on page 38. The information included in this chapter will help you to better
understand how secure communication between the Tivoli Dynamic Workload
Broker server and the Tivoli Dynamic Workload Broker Agent is performed.

The Tivoli Dynamic Workload Broker agent runs under the user account that was
specified during installation. This account is also the default user ID, which is
used for running the job on the target system when a job is submitted to the
agent and no user ID and password were explicitly specified in the job definition.
The only exception to this behavior is on the Windows platform, when the Tivoli
Dynamic Workload Broker agent is installed under the Local System account. In
this case, jobs without an explicit user ID and password definition run under the
default administrator’s account.

34 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

The Tivoli Dynamic Workload Broker agent itself consists of two major
components. Each of these major components splits into subcomponents, as
described below.

2.3.1 Major agent components

Tivoli Dynamic Workload Broker agent is responsible for performing two major
tasks: handling the jobs submitted to the agent and providing information about
the hosting machine. There are two components that perform these tasks:

� Job Execution Agent - responsible for launching and cancelling jobs on the
target system (system where agent resides) and tracking jobs’ states. A
detailed architecture is shown in Figure 2-3 on page 36.

� Resource Advisor Agent - responsible for gathering information about the
machine where it runs. Maintains information about current machine’s
utilization (CPU, memory), available disk space, and so on. A detailed
architecture is shown in Figure 2-4 on page 37.

2.3.2 Agent subcomponents

Both the Job Execution Agent and the Resource Advisor Agent are further split
into second-level subcomponents:

� Job Execution Agent

– Native Job Executor - launches jobs in the operating system’s
environments (batch files, scripts, executables)

– J2EE Job Executor - launches jobs within J2EE

• Enterprise Java Beans (EJB™) invocation

• Java Message Services (JMS) posting

Note: This only applies to Windows since there is no concept of a local system
account in UNIX. On UNIX platforms the agent runs under the nobody
account, and jobs without explicit credential definitions are submitted under
the root account.

 Chapter 2. Tivoli Dynamic Workload Broker architecture 35

The schema of a Job Execution Agent and the corresponding server
counterpart is shown in Figure 2-3.

Figure 2-3 Job Execution Agent - architecture and interaction with server

� Resource Advisor Agent

Base scanners - subcomponents responsible for scanning values from
hosting operating system. Scanners collect data about:

– Computer system
– Operating system
– Network addresses
– File systems
– Any defined logical resource

Scanners are based on Common Inventory Technology (CIT). The Common
Inventory Technology originates from many sources (such as refactored code
available of Inventory part of Tivoli Configuration Manager, Tivoli License
Manager and others).

36 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

The features of the Common Inventory Technology:

� Is a common technology for hardware and software recognition and data
collection

� Can be used by Tivoli products that need information about target system’s
hardware and software configuration

� Permits sharing of recognition functionality and data among Tivoli products

� Provides a consistent view of hardware and software configuration
information across Tivoli products

� Coordinates collection activities among Tivoli products

� Converges on a standard, common data model

The schema of the Resource Advisor Agent and the corresponding server
counterpart is shown in Figure 2-4.

Figure 2-4 Resource Advisor Agent - architecture and interaction with server

 Chapter 2. Tivoli Dynamic Workload Broker architecture 37

2.4 Common Agent Services

This section describes the purpose and the architecture of the Common Agent
Services.

Common Agent Services (CAS) is a shared infrastructure for managing the
computer systems in your environment. Multiple products can share the
Common Agent Services infrastructure if they require the same Common Agent
Services version.

Common Agent Services consists of three main components:

� Common Agent - is the shared agent used by other application agents (such
as Tivoli Dynamic Workload Broker agent). The common agent is in fact a
host for the other application agents. Application agents are installed as a
subagents of the Common Agent.

� Agent Manager - is a central point of Common Agent Services. This manages
the Common Agents and integrates with other applications. This registers the
other application servers as Resource Managers.

� Resource Manager - is a logical representation of the integrated application in
the Agent Manager. From the Agent Manager’s perspective, the Resource
Manager represents the server of the integrated application. The Tivoli
Dynamic Workload Broker server is one of possible Resource Managers that
can be registered in the Agent Manager.

We explain these components more in detail in the following subsections.

Common Agent Services is just an infrastructure for other Tivoli products. By
itself it does not perform any systems management tasks. It only offers a set of
shared functions (such as shared libraries and secure communication) for the
integrated product. Multiple Tivoli products leverage the Common Agent Services
infrastructure. Be aware that different versions of each product may require the
different version of Common Agent Services.

We provide a sample list of Tivoli products leveraging the Common Agent
Services infrastructure:

� Tivoli Dynamic Workload Broker
� Tivoli Provisioning Manager for Software
� Total Storage Productivity Center for Fabric
� Total Storage Productivity Center for Data

38 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

2.4.1 Agent Manager

Agent Manager is the central point of a Common Agent Services infrastructure. It
acts as the integration point among the application servers (such as Tivoli
Dynamic Workload Broker server) and Common Agents.

Agent Manager has following properties:

� Has its own Certification Authority for issuing certificates.

� Maintains the list of revoked certificates (CRL).

� Issues certificates for newly installed Common Agents. At registration time it
creates the certificate with the private key and distributes it together with CRL
to the new Common Agent.

� Issues certificates for new Resource Managers. At registration time it creates
the certificate with the private key and distributes it to the new Resource
Manager. The Tivoli Dynamic Workload Broker server must have a certificate
signed by Agent Manager’s certification authority to be able to communicate
with Common Agents and thus with the Tivoli Dynamic Workload Broker
subagents hosted by Common Agents.

Note: Do not confuse Common agent Services with Tivoli Management
Environment® (TME®, also known as the Tivoli Framework). These two
infrastructures are based on completely different code bases. Tivoli Common
Agent is not the Tivoli Endpoint, and Agent Manager is not a Tivoli
Management Region (TMR) server.

Note: Agent Manager leverages DB2 as its persistent storage. Agent Manager
can use the same DB2 as the Tivoli Dynamic Workload Broker server, or can
use another DB2 instance. This depends on your deployment scenario. If you
want the Agent Manager to use a different DB2 instance you need to install
the Agent Manager separately from the Tivoli Dynamic Workload Broker
server. If you install Agent Manager together with the Tivoli Dynamic Workload
Broker, both Agent Manager and Tivoli Dynamic Workload Broker server will
use the same DB2 instance.

In the Tivoli Dynamic Workload Broker V1.2 it will be possible to install an
Agent Manager that uses an Oracle database.

 Chapter 2. Tivoli Dynamic Workload Broker architecture 39

2.4.2 Common Agent

Common Agent is a shared run time that runs on each managed system
leveraging the Common Agent Services architecture. The Common Agent lets
multiple management applications share resources when managing a system
and provides them with remote deployment capability, management, and
security. One of the possible managing applications is Tivoli Dynamic Workload
Broker.

Common Agent is in fact a host for the other applications agents. An agent of a
managing application is installed as a subagent of the Common Agent.
Subagents use the Common Agent’s shared libraries and certificate for
establishing secure communication with the corresponding server counterpart.

Each Common Agent must first register to the Agent Manager to acquire the
valid certificate. Only with the valid certificate is the Common Agent (and all of its
subagents) able to communicate with other parties within the Common Agent
Services infrastructure.

Be aware that different versions of each integrated application may require the
different version of Common Agent.

2.4.3 Interaction between Tivoli Dynamic Workload Broker and
Common Agent Services

The Tivoli Dynamic Workload Broker server is registered within the Agent
Manager as a Resource Manager. Agent Manager issued a certificate for the
Tivoli Dynamic Workload Broker server at the registration time. The Tivoli
Dynamic Workload Broker server registers to Agent Manager when one of these
two events occurs:

� User wants to see the list of agents known by the Agent Manager (through the
Web Console interface)

� The Tivoli Dynamic Workload Broker server needs to connect to its agent

Tivoli Dynamic Workload Broker leverages the Common Agent Services
infrastructure for two main purposes:

� The Common Agent Services infrastructure provides secure communication
through SSL.

The communication between the Tivoli Dynamic Workload Broker server and
the Tivoli Dynamic Workload Broker Agent (which is in fact Common Agent’s
subagent) goes directly from the Tivoli Dynamic Workload Broker server to
the Tivoli Dynamic Workload Broker agent. Agent Manager is not involved in

40 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

the traffic between the Tivoli Dynamic Workload Broker server and Tivoli
Dynamic Workload Broker agents.

Agent Manager was necessary at the registration time when it issued
certificates either for the Tivoli Dynamic Workload Broker server (registered in
Agent Manager as a Resource Manager) or for the Common Agent hosting
the Tivoli Dynamic Workload Broker subagent. Both the Tivoli Dynamic
Workload Broker server and the agent use certificates issued by the same
certification authority and are able to perform mutual SSL handshakes and
establish a secure communication channel.

After the SSL channel has been established the incoming traffic from the
Tivoli Dynamic Workload Broker server goes directly to the listening port of
Common Agent. Both Tivoli Dynamic Workload Broker subagents (Resource
Advisor agent and Job Executor Agent) are exposing a Web service on that
port.

� Based on Tivoli Dynamic Workload Broker server’s request, Agent Manager
provides a list of all registered Common Agents.

The Tivoli Dynamic Workload Broker server can connect directly to the
desired Common Agent and either install or uninstall a Tivoli Dynamic
Workload Broker subagent.

From the topological perspective the Agent Manager does not necessarily have
to reside on the same machine as the main Tivoli Dynamic Workload Broker
server. If Tivoli Dynamic Workload Broker is the first Tivoli product using the

Important note concerning agent lists: It is necessary to distinguish two
different agent lists that are presented in the Tivoli Dynamic Workload
Broker Web Console interface. Each list is achieved in different way, using
different communication channels. Content of the list may also be different:

� Select Tracking → Computers. This view offers a list of Tivoli Dynamic
Workload Broker agents.

When a ITDWB Subagent is installed on the top of a Common Agent, it
connects to the Tivoli Dynamic Workload Broker server. Its name is
then stored in the list of known Tivoli Dynamic Workload Broker agents.

In this case Agent Manager was not involved in the communication
between Tivoli Dynamic Workload Broker server and agent.

� Select Scheduling Environment → Agents. This view offers a list of
all Common Agents managed by the Agent Manager (including those
ones that do not host a Tivoli Dynamic Workload Broker subagent).

In this case the Tivoli Dynamic Workload Broker contacted the Agent
Manager and requested the list of installed Common Agents.

 Chapter 2. Tivoli Dynamic Workload Broker architecture 41

Common Agent Services, the Agent Manager probably will be installed on the
same machine as the other Tivoli Dynamic Workload Broker server components.
However, in large environments, with multiple Tivoli products leveraging the
Common Agent Services infrastructure, a separate server should be dedicated
for the Agent Manager component.

For more information about the secure communication among the Tivoli Dynamic
Workload Broker server and its agents refer to 2.7.1, “Encrypted communication”
on page 52.

See Figure 2-5 for a clear view of the Tivoli Dynamic Workload Broker server
integrated with Agent Manager, and thus leveraging Common Agent Services for
communicating with its agents.

Figure 2-5 Communication between Tivoli Dynamic Workload Broker server and agent

42 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

2.5 Job and resource definitions

In this section we describe the format that is used for storing the job and resource
definitions. We also list the possibilities of how the definitions can be created.

Tivoli Dynamic Workload Broker job definitions and resource definitions are both
stored in the Tivoli Dynamic Workload Broker repositories. However, the way in
which they can be created and modified is different.

The persistent storage for both repositories is IBM database DB/2. All the data
are stored in DB/2 tables within the database dedicated for Tivoli Dynamic
Workload Broker usage. The default name of this database is TDWB.

2.5.1 Job definitions

Tivoli Dynamic Workload Broker uses a special language for defining jobs. This
language is based on XML and its name is Job Submission Description
Language (JSDL).

Each job definition is stored in the Job Repository. When saving the job definition
to the Job Repository, a validation is run against the current JSDL definition. If a
definition is not valid (it does not meet the JSDL schema), it is not saved until the
errors are corrected.

Job definitions can be created using following tools/interfaces:

� Tivoli Dynamic Workload Broker Web Console
� Job Brokering Definition Console
� Imported through command-line interface from a JSDL file
� Imported through direct Web service invocation (custom application)

The Tivoli Dynamic Workload Broker Web Console offers you the possibility to
create the job definition directly on the server, but does not provide any
sophisticated tool for this task. It requires comprehensive knowledge of JSDL
schema to be able to create correct job definitions from scratch.

Instead of writing the JSDL definitions manually, you can use a graphical tool
called Job Brokering Definition Console (JBDC). JBDC offers an intuitive user
interface for creating the job definitions. It also performs validation of the job
definition against the Job Submission Description Language (JSDL) schema, so
you will be informed of any possible error that you made during the job definition.
For more information about Job Brokering Definition Console, refer to 2.6.3, “Job
Brokering Definition Console” on page 49.

 Chapter 2. Tivoli Dynamic Workload Broker architecture 43

2.5.2 Resource definitions

Resource definitions can be created and modified through the Tivoli Dynamic
Workload Broker Web Console in a much more fashionable way than job
definitions. Web Console offers the Resource wizards, which perform
step-by-step resource definition.

All the work necessary for manipulating with resource definition can be done
through the native Tivoli Dynamic Workload Broker Web Console. An example is
shown in Figure 2-6.

Figure 2-6 Resource wizard in Tivoli Dynamic Workload Broker Web Console

2.6 Tivoli Dynamic Workload Broker User interfaces

In this section we list the user interfaces provided with Tivoli Dynamic Workload
Broker and describe their capabilities.

44 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Tivoli Dynamic Workload Broker offers a Web interface, command-line interface,
and graphical tool for defining the Tivoli Dynamic Workload Broker jobs. We
describe all of them in following sections.

All the user interfaces use the Web services interface provided by the Tivoli
Dynamic Workload Broker server (the ITDWB enterprise application running in
the WebSphere Application Server).

2.6.1 Tivoli Dynamic Workload Broker Web Console

The Web interface of Tivoli Dynamic Workload Broker is called Tivoli Dynamic
Workload Broker Web Console.

Tivoli Dynamic Workload Broker leverages Integrated Solutions Console (ISC)
and puts its Web Console into the ISC portal solution.

In fact, the Integrated Solutions Console is a common interface for multiple
products, such as Tivoli Storage Manager (TSM), Tivoli Workload Scheduler
(TWS) and so on.

The Integrated Solutions Console should be installed on a different machine from
the Tivoli Dynamic Workload Broker server. It is also runs within separated
WebSphere Application Server. For more details about default installation paths
see 2.9, “Physical location of Tivoli Dynamic Workload Broker’s components” on
page 73.

Note: The Integrated Solutions Console cannot be installed into the same
WebSphere Application Server because the Integrated Solutions Console
shipped with Tivoli Dynamic Workload Broker server V 1.1 uses an embedded
WebSphere Application Server instance.

This statement does not mean that you cannot install the Integrated Solutions
Console on the same machine as the Tivoli Dynamic Workload Broker server.
We just emphasize the fact that the Integrated Solutions Console (ISC) J2EE
application cannot be installed onto the same WebSphere Application Server
instance that hosts the Tivoli Dynamic Workload Broker server (the ITDWB
J2EE application).

 Chapter 2. Tivoli Dynamic Workload Broker architecture 45

Tivoli Dynamic Workload Broker Web Console provides a Web interface for
managing the Tivoli Dynamic Workload Broker environment. It offers, for
instance:

� Defining computers and logical resources
� Editing job definitions
� Submitting and monitoring jobs
� Recovering failing jobs or resources

It is possible to connect to the Tivoli Dynamic Workload Broker Web Console with
any supported browser.

46 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

You can see an example of the Web Console in Figure 2-7.

Figure 2-7 Tivoli Dynamic Workload Broker Web console leveraging ISC

2.6.2 Command-line interface

Tivoli Dynamic Workload Broker also provides a command-line interface (CLI)
that offers similar functionality as a graphical Web Console. CLI is useful for
those users who prefer to administer the environment from the command line.
CLI also offers wider possibilities for scripting of more complicated tasks.

 Chapter 2. Tivoli Dynamic Workload Broker architecture 47

The command-line interface (CLI) allows the Tivoli Dynamic Workload Broker
user to perform all the essential operations necessary for managing the jobs. By
using a CLI, a Tivoli Dynamic Workload Broker user can also put jobs into the
archive database tables.

A command-line interface offers following functionality:

� Managing job definitions
� Submitting jobs
� Getting job details
� Cancelling jobs
� Querying jobs
� Archiving database tables

We provide simple mapping among these operations and their corresponding
commands below.

Example 2-1 shows the job submission from the command line.

Example 2-1 Submitting a job from command-line interface

C:\Documents and Settings\Administrator>jobsubmit -jdname first
Call Job Dispatcher to submit the job.
Success returned from Job Dispatcher
The job d5ac970a-588a-3eaf-bfcf-b13d8d62b0b3 submitted successfully

The default path of command line binaries is the /bin subdirectory of the Tivoli
Dynamic Workload Broker installation directory:

� On Windows - C:\Program Files\ITDWB\Server\bin
� On UNIX platforms - /opt/IBM/ITDWB/Server/bin

Before you can launch any of the CLI executables, you must source the Tivoli
Dynamic Workload Broker environment:

� On Windows C:\Program Files\ITDWB\Server\bin\tdwb_env.bat
� On UNIX . /opt/IBM/ITDWB/Server/bin/tdwb_env.sh

48 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Table 2-1 describes mapping among Tivoli Dynamic Workload Broker operations
and their corresponding commands.

Table 2-1 Command Line Interface - command list

All of the CLI executables can be run only on the Tivoli Dynamic Workload Broker
server. There is currently no deployment scenario available that allows you to
install Tivoli Dynamic Workload Broker CLI on a separate machine and issue
commands remotely.

2.6.3 Job Brokering Definition Console

The Job Brokering Definition Console is a graphical tool that serves as a
user-friendly interface for creating Tivoli Dynamic Workload Broker job brokering
definitions.

The Job Brokering Definition Console also servers as a conversion tool for
transforming the Tivoli Workload Scheduler (TWS) jobs into Tivoli Dynamic
Workload Broker job brokering definitions.

The Job Brokering Definition Console is typically installed on the workstations of
Tivoli Dynamic Workload Broker administrators developing the job definitions.
The Job Brokering Definition Console requires a TCP/IP connection to the Tivoli
Dynamic Workload Broker server.

Creating and modifying Tivoli Dynamic Workload Broker job
definitions

Tivoli Dynamic Workload Broker job definitions are written in an XML-based
language called Job Submission Description Language (JSDL). Unlike the
resources, there is no wizard for job definitions in the Tivoli Dynamic Workload
Broker Web Console. The Web Console offers only a plain text editor, where you
have to write the whole JSDL code by yourself.

Task Related command

Manage job definitions. jobstore

Job submission. jobsubmit

Getting single job details. jobdetails

Cancel job. jobcancel

Query jobs. jobquery

Archive database tables. movehistorydata

 Chapter 2. Tivoli Dynamic Workload Broker architecture 49

Creating a JSDL definition in a plain text editor could be a hard task. First, you
must know the syntax Job Submission Description Language, and second, you
must avoid any error and strictly follow the JSDL schema. Both of these tasks
can be very time consuming. In most cases the direct access to JSDL definitions
is suitable only for minor definition changes, but not for creating the definition
from scratch.

Job Brokering Definition Console (JBDC) is a tool that does this all for you. It
provides a user interface for an easy and intuitive job definitions creation. You
can see a snapshot of the Job Brokering Definition Console in Figure 2-8.

Figure 2-8 Job Brokering Definition Console interface

Note: Job Brokering Definition Console can only create job definitions. If you
want to create resource definitions, you must use Tivoli Dynamic Workload
Broker Web Console wizards.

50 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Job Brokering Definition Console can be installed on a remote workstation. It can
work with job definitions stored in two repositories:

� Local file system
� Server job repository

You can download or upload the job definitions between your local and server
repository. Any new job definition made by JBDC is stored locally first. It is not
visible on the server until you upload this definition.

A different approach should be used when modifying the job definitions. Even if
you can modify your local job definition, and after that upload it to the server, that
is not the best way. The best practice is to use the server copy. The reason for
that is simple: job definitions can be modified also through the Tivoli Dynamic
Workload Broker Web Console. If somebody did that, and you overwrite the job
definition with your local copy, changes made previously to the server copy will
be lost.

Another thing that you have to keep in mind is the fact that JBDC does not have a
direct link to Tivoli Dynamic Workload Broker resources. This means that you
must know the exact resource name when defining a resource dependency for a
job. JBDC offers you several boxes for filling in resources that are necessary for
running a job, but it does not provide any list of already defined resources. If you
want to fill in any resource, you must go to the Tivoli Dynamic Workload Broker
Web Console first, read the resource name there, go back to the Job Brokering
Definition Console, and write resource name there.

Converting Tivoli Workload Scheduler job definitions into
Tivoli Dynamic Workload Broker job brokering definitions
Job Brokering Definition Console is also a transformation tool used for converting
Tivoli Workload Scheduler job definitions into Tivoli Dynamic Workload Broker
job brokering definitions. The detailed step-by-step mechanism is described in
the 5.1, “Tivoli Workload Scheduler migration to Tivoli Dynamic Workload Broker”
on page 176.

2.7 Security features

In this section we describe the security features of Tivoli Dynamic Workload
Broker broker.

 Chapter 2. Tivoli Dynamic Workload Broker architecture 51

Software solutions used for job workload management have the authority to
launch jobs across many machines and platforms across the IT environment. A
misuse of a such software tools could lead to severe security threats, such as:

� Unauthorized job management
– Submitting of jobs
– Cancelling of jobs
– Providing the jobs with inappropriate parameters

� Sniffing of job outputs
� Sniffing logon credentials sent with the jobs

To reduce the security risks, the following features are included in Tivoli Dynamic
Workload Broker:

� Encrypted communication
� Firewall support
� Authentication mechanism
� Authorization roles

All the above-mentioned features are described in following chapters.

2.7.1 Encrypted communication

In this section we describe how the Tivoli Dynamic Workload Broker server
communicates with external components. We describe in detail two different
communication networks that Tivoli Dynamic Workload Broker uses.

Tivoli Dynamic Workload Broker uses Web services as a communication
mechanism among its components. The Tivoli Dynamic Workload Broker server
accepts incoming Web services calls either from clients or from agents. Also, the
agents accept Web services calls incoming from the server.

Tivoli Dynamic Workload Broker uses either HTTP or HTTPS (HTTP over SSL)
protocols as the transport layer. This chapter describes how the secure channels
can be established among the Tivoli Dynamic Workload Broker components.

52 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Two communication networks
From the topological point of view we can determine two different communication
networks among the Tivoli Dynamic Workload Broker server and external
components:

� Communication with clients
– Web Console running in the Integrated Solutions Console
– Job Brokering Definition Console
– Command-line interface
– Custom external applications that are using Web service calls

� Communication with managed agents
– Tivoli Dynamic Workload Broker subagents hosted by Common Agents

You can see both communication networks in Figure 2-9.

Figure 2-9 Communication networks

We describe both of the communication networks in the following sections.

Server → Agent communication
In this section we describe what mechanism is used for establishing trusted
communication among Tivoli Dynamic Workload Broker server and Tivoli
Dynamic Workload Broker agents.

 Chapter 2. Tivoli Dynamic Workload Broker architecture 53

The Tivoli Dynamic Workload Broker server leverages a Common Agent
infrastructure for communication with its agents.

Common Agent Services consists of the following parties:

� Agent Manager - central point of Common Agent Services. This has its own
Certification Authority, which is used for issuing certificates to Common
Agents and Resource Managers.

� Common Agents - agents installed on each managed system. Tivoli Dynamic
Workload Broker agents are installed as subagents of Common Agents. Each
Common Agent has a certificate issued by Agent Manager.

� Resource Manager - the server part of the application that is using the
Common Agent Services infrastructure. From Agent Manager’s perspective
the Tivoli Dynamic Workload Broker server is a Resource Manager.

There are different events that invoke the registration either of a Tivoli Dynamic
Workload Broker server or a Tivoli Dynamic Workload Broker agent:

� Tivoli Dynamic Workload Broker servers register to Agent Manager when one
of these two events occurs:

– User wants to see the list of agents known by the Agent Manager (through
the Web Console interface)

– The Tivoli Dynamic Workload Broker server needs to connect to an agent

� Tivoli Dynamic Workload Broker agent registers in the installation time (if not
installed in disconnected mode)

Each party registered in the Common Agent Services infrastructure has a pair
made up of a unique certificate and a private key. Both certificate and private key
were generated and signed by Agent Manager’s Certification Authority during
registration. Together with the key-pair, the Certification Authority's certificate
was provided to each Agent and Resource Manager.

These certificates are used for a mutual SSL handshake when establishing the
secure channel between Tivoli Dynamic Workload Broker server and Tivoli
Dynamic Workload Broker Agent. The term mutual means that both parties must
use their certificates and private keys during SSL handshake and thus prove their
identity. Each party trusts the other because their certificates have been issued
by the same certification authority.

54 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

The communication between the Tivoli Dynamic Workload Broker server and
Tivoli Dynamic Workload Broker Agent (the Common Agent’s subagent) goes
directly from the Tivoli Dynamic Workload Broker server to the Tivoli Dynamic
Workload Broker agent and is not routed through the Agent Manager. The Agent
Manager played its most important part during the registration time when it
issued certificates.

For additional information about Common Agent Services infrastructure, see 2.4,
“Common Agent Services” on page 38.

Client → Server communication
In this section we describe what mechanism is used for establishing trusted
communication among the Tivoli Dynamic Workload Broker server and its clients.

First we introduce the out-of-box provided user interfaces:

� Web Console running in Integrated Solutions Console
� Command-line interface
� Job Brokering Definition Console

The same mechanism as the user interfaces leverages two additional clients:

� Tivoli Workload Scheduler Agent
� External applications using API interface based on Web services technology

All Tivoli Dynamic Workload Broker clients use a Web services interface when
communicating with the Tivoli Dynamic Workload Broker server. The transport
protocol used for the communication can be either HTTP or HTTPS.

Note: Each certificate issued by the Agent Manager is unique, but all the
certificates are of the same type. The certificates issued for the Resource
Manager (Tivoli Dynamic Workload Broker server) and for a Common Agent
(hosting Tivoli Dynamic Workload Broker subagent) are each unique, but it is
not possible to distinguish whether the certificate was issued for the a
managing server or a managed agent. Due to this, it is possible to establish a
trusted secure communication not only between server and agent, but also
between two agents. Theoretically, a Tivoli Dynamic Workload Broker Agent
could be able to accept instructions from any other Common Agent that would
use correct Web services calls.

Important: Because of the concept of Common Agent Services, the
communication between the Tivoli Dynamic Workload Broker server and the
Tivoli Dynamic Workload Broker agent is always encrypted. This is a must and
encrypted communication cannot be switched off.

 Chapter 2. Tivoli Dynamic Workload Broker architecture 55

Both HTTP and HTTPS protocols are enabled by default on the server side. This
means that the Tivoli Dynamic Workload Broker server accepts Web services
calls that were delivered using either secure or non-secure protocols. Depending
on the client’s configuration, you may use either HTTP or HTTPS. All the clients
are configured to use the HTTP (unecrypted) protocol by default. The following
configuration steps must be done to change the configuration of clients for
enforcing HTTPS:

� Job Brokering Definition Console - When defining the connection to the Tivoli
Dynamic Workload Broker server you can choose whether you want to use a
secure connection.

� Integrated Solutions Console - In the view Tivoli Dynamic Workload
Broker → Configuration → Server Connections you can select whether
you want to use the secure connection.

� Command-line interface - uses by HTTP default. By editing the
CLIConfig.properties file you can select whether you want to use the secure
connection.

A secure channel between a server and its client is established using the
out-of-box populated truststores.

Each party (server and clients) already has out-of-box keystores populated as
follows:

� Client side:

– TDWBClientKeyFile.jks - contains the client's private key
– TDWBClientTrustFile.jks - contains the server's certificate

� Server side:

– TDWBServerKeyFile.jks - contains the server's private key
– TDWBServerTrustFile.jks - contains the client's certificate

For physical locations of those files either on the client or server side, see
2.9.3, “Location of certificates and private keys” on page 77.

As shown in the list above, each party has locally stored its own private key and
the certificate of the counterpart. Thus, everything necessary for the SSL
handshake is prepared on both sides. By default only a server-side SSL
handshake is implemented.

Note: In a production environment we strongly recommend using HTTPS on
all clients, because without encryption goes all the communication in clear
text.

56 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Summary of default certificates used in secure
communication
In this section we provide the list of all possible certificates and private keys that
are by default used by the Tivoli Dynamic Workload Broker.

As we have stated before, Tivoli Dynamic Workload Broker uses two types of
communication networks. We list the certificates and private keys for both of
them:

� Certificates and private keys used in client network:

– Client’s private key and certificate: For each client there is the same key
pair (private/public). A client’s private key is stored on the client, and
client’s certificate (which includes client’s public key) is stored in the
server’s truststore on the server.

By default the same client’s private key is stored on all clients and the
client’s certificate stored on the server is common for all clients. The
private and public keys are already included in the installation bundles.
They are not generated at installation time.

– Server’s private key and certificate - A server’s private key is stored on the
server. A server’s certificate (which includes a server’s public key) is
stored on each client.

By default the same private key is stored on any installed Tivoli Dynamic
Workload Broker server and the same server’s certificate is stored on
each installed client. The private and public keys are already included in
the installation bundles. They are not generated at installation.

The default certificates and private keys are used only for a SSL
handshake. They provide the confidentiality and integrity features (nobody
can read or change transferred data), but do not provide authentication
(they do not ensure the identity of any client). However, you may use your
own certificates that will correspond to each particular system.

� Certificates and private keys used in agent network

– Agent’s private key and certificate - They are both generated by Agent
Manager during the registration time. Each Common Agent registers to
Agent Manager and provides the common registration password. Agent
Manager then generates the certificate and private key for that agent.
They are always unique. The agent’s private key is stored on the agent,
and the agent’s certificate (which includes the agent’s public key) is stored
in the Agent Manager’s truststore. Also, the certificate of Agent Manager’s
Certification Authority is transferred to the agent during registration.

– Server’s private key and certificate - generated by Agent Manager at
registration of the Tivoli Dynamic Workload Broker server to the Agent

 Chapter 2. Tivoli Dynamic Workload Broker architecture 57

Manager. During registration the Tivoli Dynamic Workload Broker server
must provide the correct registration password. Agent Manager then
generates a certificate and private key for the Tivoli Dynamic Workload
Broker server and registers it as a Resource Manager. This certificate is
always unique. Also, the certificate of Agent Manager’s Certification
Authority is transferred to the server (Resource Manager) during
registration.

Figure 2-10 shows the communication of Tivoli Dynamic Workload Broker server
with its agents and clients. It also shows the certificates involved in establishing
secure communication.

Figure 2-10 Communication networks and used certificates

58 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

2.7.2 Firewall support

Tivoli Dynamic Workload Broker uses strictly defined ports for inbound
communication. When placed in firewall environment, it is sufficient to specify
corresponding allow attributes for the listening ports used by Tivoli Dynamic
Workload Broker components. See Figure 2-11 to get an idea of how the Tivoli
Dynamic Workload Broker traffic passes through the zone boundaries.

Figure 2-11 Sample - interaction with firewalls

For a detailed list of ports used by Tivoli Dynamic Workload Broker components
refer to Appendix B, “Default ports used by Tivoli Dynamic Workload Broker” on
page 657.

2.7.3 Authentication mechanism

In previous sections we explained the two different communication networks:

� Client network
� Agent network

Browser ISC Server & AM & DB

DB

Agent

TWS

8421
8422
8423

9550
9551

9510
9511
9512
9513
9550

31111
31111

Agent Manager

Server

INTRANET DMZ PRODUCTION

Fi
re

w
al

l

Fi
re

w
al

l
Browser ISC Server & AM & DB

DB

Agent

TWS

8421
8422
8423

9550
9551

9510
9511
9512
9513
9550

31111
31111

Agent Manager

Server

INTRANET DMZ PRODUCTION

Fi
re

w
al

l

Fi
re

w
al

l

 Chapter 2. Tivoli Dynamic Workload Broker architecture 59

In each of these networks a different authentication mechanism is used. We
explain them more in detail in the following sections.

Authentication in agent network
Authentication in the agent’s network is assured by the mechanism of Common
Agent Services. Each party registered in the Common Agent Services has its
unique certificate, which proves the identity of each party performing the mutual
SSL handshake (establishing the secure connection).

No additional authentication is implemented. Proving the identity using the
certificate is sufficient.

Authentication in client network
When speaking about the authentication mechanism, we must distinguish the
data flows among various clients and Tivoli Dynamic Workload Broker server. In
fact, we can separate the clients into two categories:

� Clients directly calling the listening server port on which Tivoli Dynamic
Workload Broker server exposes Web services. Clients that communicate
with the server directly are:

– Job Brokering Definition Console

– Command Line Interface

– Any application using Web services interface (such as Tivoli Workload
Scheduler Agent or any custom application)

� Web browser connecting to Tivoli Dynamic Workload Broker Web Console.
The browser points to the Integrated Solutions Console portal first. Tivoli
Dynamic Workload Broker Web Console running within the portal then
handles the request and calls the listening server port, on which Tivoli
Dynamic Workload Broker server exposes Web services.

Indenpendently on the client’s category, the authentication on Tivoli Dynamic
Workload Broker server is dependent on WebSphere Application Server’s
settings. Authentication is enforced when WebSphere Application Server has
Global Security enabled. By default WebSphere Application Server does not
have Global Security switched on.

A detailed description of how to switch on the authentication for Tivoli Dynamic
Workload Broker server is included in 4.2.4, “Credentials for job definitions” on
page 152.

Direct client → Server authentication
In this section we describe the mechanism of authentication in direct client -
server communication and how this authentication can be turned on.

60 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

The Tivoli Dynamic Workload Broker in installed into WebSphere Application
Server and leverages the WebSphere Application Server’s authentication
mechanism. Tivoli Dynamic Workload Broker does not implement any internal
authentication infrastructure for communication with clients.

The authentication mechanism is enabled on the Tivoli Dynamic Workload
Broker server when the Global Security of the WebSphere Application Server is
enabled.

Depending on the WebSphere Application Server configuration, the user
authentication is performed either against local operating systems user authority,
or against a defined LDAP. WebSphere Application Server by itself does not
contain any user definitions and credential vaults.

When the Global Security is turned on, each client must provide a user ID and
password. These credentials are transported within the HTTP header because a
HTTP Basic Authentication is used. Every time a request is transferred from
client to server, it carries in the HTTP header the credentials. WebSphere
Application Server takes care of the authentication then (either using operating
systems authority or by checking the credentials with the LDAP).

Important: Global Security for the WebSphere Application Server V 6.0 is
disabled by default. It can be enabled by the WebSphere Administrative
Console. Be aware that an Enable J2EE security check box will be
preselected if you enable the Global Security. If you enable the Global
Security, make sure that you have deselected the Enable J2EE security check
box prior to submitting the request. The J2EE security must not be enabled on
the WebSphere Application Server V 6.0 hosting Tivoli Dynamic Workload
Broker server.

Note: In this section we do not discuss encrypted communication, but about
authentication. We stress this fact because we want to avoid a confusion.
There is a difference between these terms. For instance, you may use a
secure channel that was established between client and server using the
server certificate for the SSL handshake. But if the WebSphere Application
Server does not have Global Security turned on, you still do not have an
authentication mechanism in place, even if you use certificates and SSL.

 Chapter 2. Tivoli Dynamic Workload Broker architecture 61

Figure 2-12 Client-Server authentication

Browser → ISC → Web Console → server authentication
In this section we describe the mechanism of authentication when a Tivoli
Dynamic Workload Broker Web Console is used for communication with a server.

In this case we must split the authentication into two steps:

� Authentication performed by the Integrated Solutions Console hosting the
Tivoli Dynamic Workload Broker Web Console

� Authentication performed on the Tivoli Dynamic Workload Broker server side

Now we describe the Integrated Solutions Console authentication mechanism in
greater detail and explain the interaction with Tivoli Dynamic Workload Broker
server authentication.

The Tivoli Dynamic Workload Broker Web Console is hosted by the Integrated
Solutions Console. It enforces the authentication mechanism by default, has its
own authentication mechanism, and maintains its own credential vault. The
Integrated Solutions Console keeps all the defined credentials in the embedded
Cloudscape™ database. The Integrated Solutions Console does not use any

Note: Before reading the following sections make sure that you have read
“Direct client Æ Server authentication” on page 60. We explained several
terms in that section and they are necessary for understanding the following
sections.

62 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

operating system authentication, nor does it integrate with any external LDAP.
Each user that wants to access any application running within the Integrated
Solutions Console (such as Tivoli Dynamic Workload Broker Web Console) is
authenticated against the Integrated Solutions Console credential vault.

The user that wants to use the Tivoli Dynamic Workload Broker Web Console to
access the Tivoli Dynamic Workload Broker server sees only one visible
authentication step — he must provide the user ID and password defined in the
Integrated Solutions Console.

If the Global Security on the WebSphere Application Server hosting the Tivoli
Dynamic Workload Broker server is turned off, no further authentication is
required.

If the Global Security on the WebSphere Application Server hosting the Tivoli
Dynamic Workload Broker server is turned on, the user must authenticate itself
against the WebSphere Application Server hosting the Tivoli Dynamic Workload
Broker server. The logon credentials are not the same on the Integrated
Solutions Console and on the operating system (or LDAP) that uses the
WebSphere Application Server (hosting the Tivoli Dynamic Workload Broker
server). Both credential vaults are not automatically synchronized in any way.
Due to this, a mapping among the logon definitions stored in the Integrated
Solutions Console and authority that is used by WebSphere Application Server
(hosting the Tivoli Dynamic Workload Broker server) must be done. The mapping
is performed on the Integrated Solutions Console side.

The mapped credentials are then passed to the WebSphere Application Server
(hosting the Tivoli Dynamic Workload Broker server). Then the authentication
mechanism is exactly the same, as described in “Direct client Æ Server
authentication” on page 60. The credentials are transferred in each HTTP
request within the HTTP header and the user’s identity is checked using HTTP
Basic authentication.

 Chapter 2. Tivoli Dynamic Workload Broker architecture 63

Figure 2-13 shows the whole mechanism of authentication when the user
connects to the Tivoli Dynamic Workload Broker server using the Web Console.

Figure 2-13 Browser-ISC-TDWB server authentication

2.7.4 Authorization roles

In this section we describe the different authorization roles that different Tivoli
Dynamic Workload Broker users can posses. We also explain the scope of roles
and where can they be defined.

Different degrees of authorization allow users to perform different set of actions.
Table 2-2 shows the full list of all possible authorization roles.

Table 2-2 List of Tivoli Dynamic Workload Broker authorization roles

Authorization role Permitted operations

Administrator Super user with full authorization
(configurator + developer + operator)

Configurator Manages the scheduling infrastructure

Developer Manages job definitions (necessary role
for Job Brokering Definition Console when
communication with Tivoli Dynamic
Workload Broker server)

64 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

The user assignments to particular roles can be changed using the WebSphere
Application Server Administrative Console (on the WebSphere Application
Server hosting the Tivoli Dynamic Workload Broker server).

By default any user that successfully authenticates against the WebSphere
Application Server (hosting the Tivoli Dynamic Workload Broker server) has the
administrator role.

If this user accesses the Tivoli Dynamic Workload Broker server using the Web
Console interface, he must authenticate itself at least against the Integrated
Solutions Console.

Recommended security best practices after installation
In this section we describe the necessary steps that will set up a more secure
environment than the default installation:

1. Turn on WebSphere Application Server Global Security (on the WebSphere
Application Server hosting the Tivoli Dynamic Workload Broker server).

2. Define new users within the Integrated Solutions Console.

3. Map these newly defined users with the users used by the WebSphere
Application Server hosting the Tivoli Dynamic Workload Broker server.

4. Assign the users their desired authorization roles using the WebSphere
Application Server Administrative Console (on the WebSphere Application
Server hosting the Tivoli Dynamic Workload Broker server).

5. Optionally, generate a new server certificate for the Tivoli Dynamic Workload
Broker server. This certificate will be used for communication in the client
network. Distribute this new certificate into the appropriate directory on all
possible clients. If you install any new client (such as a new instance of the

Operator Monitors and controls any job that has
been submitted

Submitter Monitors and controls own jobs
(necessary role required for TWS Agent)

Note: If a particular role is assigned to a user, it is valid for all jobs and
resources in the environment. For instance, a developer role allows the user to
modify and delete any job defined in the Job Repository. It is not possible to
narrow the scope of jobs and resources to the given role. However, this feature
is planned for future versions.

Authorization role Permitted operations

 Chapter 2. Tivoli Dynamic Workload Broker architecture 65

Job Brokering Definition Console, you must distribute this certificate to that
client).

2.8 Tivoli Dynamic Workload Broker deployment
scenarios

In this section we look at the different Tivoli Dynamic Workload Broker
deployment scenarios covering not only the different ways that the Tivoli
Dynamic Workload Broker can be deployed ether in a standalone solution or the
integration with an enterprise scheduling tool, but also best practices around
where the main components of the Tivoli Dynamic Workload Broker can be
installed.

2.8.1 Location of main Tivoli Dynamic Workload Broker components

In this section we cover where the main components of a Tivoli Dynamic
Workload Broker that can be installed, and the location of where these main
components are installed depends on the customer, as they may already have
some of these components installed and would like to use them for Tivoli
Dynamic Workload Broker, and these are DB2 Universal database, WebSphere
Application Server, Tivoli Agent Manager, the Integrated Solutions Console, and
the Common Agent Services. For detailed information about the installation of
each component look Chapter 3, “Tivoli Dynamic Workload Broker installation”
on page 81, or the IBM Tivoli Dynamic Workload Broker Installation and
Configuration, SC32-2282.

The main components of Tivoli Dynamic Workload Broker that are covered in this
section are:

� DB2 Universal Database™ server or client
� WebSphere Application Server
� Tivoli Dynamic Workload Broker server
� Integrated Solutions Console
� Tivoli Dynamic Workload Broker Web Console
� Tivoli Dynamic Workload Broker Job Brokering Definition Console
� Tivoli Agent Manager
� Tivoli Common Agents
� Tivoli Dynamic Workload Broker agent

66 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

2.8.2 DB2 Universal Database

The DB2 Universal Database is a prerequisite for two of the other components,
namely the Tivoli Dynamic Workload Broker server and Tivoli Agent Manager.
You can use the same DB2 instance for both of these products or you can use a
different DB2 instance for the the Tivoli Dynamic Workload Broker server and
Tivoli Agent Manager. This depends on the performance of the database and the
location of the Tivoli Dynamic Workload Broker server and Tivoli Agent Manager.

The location of the DB2 instance depends on the customer, as they may already
have an instance of DB2 installed in their environment that meets the required
software supported level, in which case you can use this for both the Tivoli
Dynamic Workload Broker server and Tivoli Agent Manager. If this DB2 instance
resides on a different system from that of the Tivoli Dynamic Workload Broker
server and or the Tivoli Agent Manager then you will have to install the DB2 client
for the Tivoli Dynamic Workload Broker server and the Tivoli Agent Manager.

For better performance it would be preferable to have the DB2 on a different
system from that of the Tivoli Dynamic Workload Broker server and Tivoli Agent
Manager. But if the Tivoli Dynamic Workload Broker server is configured in a
small environment and running on a powerful system, then you can install DB2
on the same system as the Tivoli Dynamic Workload Broker server.

2.8.3 WebSphere Application Server

In a normal installation you would have one instance of WebSphere Application
Server for both the Tivoli Dynamic Workload Broker server and the Tivoli Agent
Manager. This WebSphere Application Servers applications can coexist on the
same system as the server and Agent Manager, as the installation default ports
are different for each instance.

For the best performance, we recommend installing the Tivoli Dynamic Workload
Broker server and the Tivoli Agent Manager each into a separate instance of
WebSphere Application Server, running on two different servers. But this
depends on the customer, as they may have a WebSphere Application Server
that meets the required support level that they would like to use for part of this
installation.

2.8.4 Tivoli Dynamic Workload Broker server

The The Tivoli Dynamic Workload Broker server is an application that runs in the
WebSphere Application server. So the installation location of the Tivoli Dynamic
Workload Broker server depends on the installed location of the WebSphere
Application server, as described above.

 Chapter 2. Tivoli Dynamic Workload Broker architecture 67

2.8.5 Tivoli Dynamic Workload Broker Web Console

The Tivoli Dynamic Workload Broker Web Console is an application that runs in
the Integrated Solution Console. So the installation location of the Tivoli Dynamic
Workload Broker Web console depends on the installed location of the Integrated
Solution Console.

2.8.6 Tivoli Dynamic Workload Job Brokering Definition console

The Tivoli Dynamic Workload Broker Job Brokering Definition Console can be
installed on any workstation that the application developer for the Tivoli Dynamic
Workload Broker, this workstation requires an TCP/IP connection to the Tivoli
Dynamic Workload Broker server, and providing that it meets the required
support level for both hardware and operating system for the Tivoli Dynamic
Workload Broker Job Brokering Definition Console product.

2.8.7 Tivoli Agent Manager

The location of where you would install the Tivoli Agent Manager depends on the
Location of both DB2 and the WebSphere Application server, as the Tivoli Agent
Manager has a prerequisite of both of these products. The Tivoli Agent Manager
may already be installed in your environment, as Tivoli Provisioning Manager
also uses the Tivoli Agent Manager. If this is the case then you can use this
installation for the Tivoli Dynamic Workload Broker.

We recommend that the Tivoli Agent Manager is installed on a separate system
from the the Tivoli Dynamic Workload Broker server so that the load of these two
products is spread across two systems. You can install the Tivoli Agent Manager
and Tivoli Dynamic Workload Broker on the same system, as the default ports
are different for each of these two products. You would only install both of these
products on the same system if the Dynamic Workload Broker server is installed
in a small environment and is running on a powerful system that is able to handle
the load.

2.8.8 Tivoli Common Agents

The Common Agents are the agents hosting the Tivoli Dynamic Workload Broker
subagent and the Tivoli Common Inventory Technology subagent providing them
with remote deployment capability, management, and security. These systems
must meet the required support level for both hardware and operating system, as
listed in IBM Tivoli Dynamic Workload Broker Installation and Configuration,
SC32-2282.

68 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

2.8.9 Tivoli Dynamic Workload Broker agent

The Tivoli Dynamic Workload Broker agent is where the jobs will be executed, so
you will need to install an instance of the Tivoli Dynamic Workload Broker agent
on each system on which you require jobs to be run. These systems must meet
the required support level for both hardware and operating system, as listed in
IBM Tivoli Dynamic Workload Broker Installation and Configuration, SC32-2282.

2.8.10 Tivoli Dynamic Workload Broker standalone solution

The Tivoli Dynamic Workload Broker can be installed as a standalone solution
without the integration of an enterprise scheduling tool like the Tivoli Workload
Scheduler. You would choose this type of configuration for a number of reasons:

� Tivoli Dynamic Workload Broker may be installed in a very small environment
where all the jobs can be defined and controlled by the two consoles, namely
the Job Brokering Definition console, which is used for creating and modifying
the jobs; and the Tivoli Dynamic Workload Broker Web Console, which is
used for managing the Tivoli Dynamic Workload Broker environment.

� If there are no complex dependences between jobs you have the ability to
create the jobs and submit them through the two consoles.

� If the Tivoli Workload Scheduler is not installed in this environment.

 Chapter 2. Tivoli Dynamic Workload Broker architecture 69

Figure 2-14 shows the schema of the Tivoli Dynamic Workload Broker
standalone solution.

Figure 2-14 Standalone Tivoli Dynamic Workload Broker solution

2.8.11 Common usage of Tivoli Workload Scheduler and Tivoli
Dynamic Workload Broker

A more common solution is where we integrate Tivoli Dynamic Workload Broker
with Tivoli Workload Scheduler, as Tivoli Dynamic Workload Broker provides a
series of improvements on your existing Tivoli Workload Scheduler solution:

� Virtualization of the scheduling infrastructure by providing an abstraction layer
on the resource selection

70 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

� Workload balancing by routing jobs among a group of resources according to
the availability and activity levels of those resources

� SOA job brokering services

� Scheduling of IBM WebSphere Java 2 Enterprise Edition (J2EE) applications

� Automatic routing of jobs to the most appropriate resources based on job
requirements

� Enhanced flexibility in workload distribution and running

� Automatic routing of jobs for which submission failed to appropriate resources

Tivoli Workload Scheduler provides the following features to Tivoli Dynamic
Workload Broker not only in a distributed environment but also in a end-to-end
deployment as well:

� End-to-end scheduling infrastructure

� Ability to use all of the sophisticated scheduling dependices such as:

– Planning where we can define run cycles using calendars or specifying
days of week, using work days

– Defining timed dependency both in start and deadline time

– Creation of a file

– Prompts

– Submission priority

– Ability to define the number of simultaneously executing jobs

– Choreographing capabilities where we have the ability to define
predecessors and successors

 Chapter 2. Tivoli Dynamic Workload Broker architecture 71

Figure 2-15 shows the schema of the Tivoli Dynamic Workload Broker integrated
with the Tivoli Workload Scheduler.

Figure 2-15 Tivoli Dynamic Workload Broker integrated with Tivoli Workload Scheduler

2.8.12 Setting up monitoring for Tivoli Dynamic Workload Broker

Independently on the selected deployment scenario, it is always good to
integrate the job brokering environment with the monitoring solution. The
operators of monitoring centers usually observe the monitoring consoles more
often and can quickly react to errors or unpredictable conditions.

An alert is usually set up together with monitoring. Due to this you can receive
(for instance) an SMS on your mobile device each time an important error occurs
in the Tivoli Dynamic Workload Broker environment.

A more detailed description of integration of the Tivoli Dynamic Workload Broker
with IBM monitoring solution - IBM Tivoli Monitoring is in 8.4, “Integration with
IBM Tivoli Monitoring” on page 325.

72 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

2.9 Physical location of Tivoli Dynamic Workload
Broker’s components

This section provides a more detailed view of Tivoli Dynamic Workload Broker
components from the file system point of view. It can serve as a basic link from
the architectural point of view to the configuration or troubleshooting perspective.

2.9.1 Locations of server components

As described before, Tivoli Dynamic Workload Broker server components consist
of several J2EE applications:

� Main application called ITDWB
� Agent Manager
� Optional Tivoli Workload Scheduler Agent

All of these enterprise applications are running within the WebSphere Application
Server. Each of these components can be managed separately by the
WebSphere Administrative Console and has its own file structure within the
WebSphere Application Server.

The Tivoli Dynamic Workload Broker Web Console is not a direct part of Tivoli
Dynamic Workload Broker server binaries. It is installed as a part of the
Integrated Solutions Console. Integrated Solutions Console is a portal solution
that can be a common interface for other products, such as Tivoli Storage
Manager (TSM), Tivoli Workload Scheduler (TWS), and so on. The Integrated
Solutions Console uses its own embedded WebSphere Application Server
instance.

Figure 2-16 on page 74 shows the Tivoli Dynamic Workload Broker server
components as separate J2EE applications that are running within the
WebSphere Application Server. Note that neither Tivoli Dynamic Workload
Broker Web Console nor Integrated Solutions is present within the list. The
reason for this is that the Tivoli Dynamic Workload Broker Web Console and
Integrated Solutions Console are installed under other WebSphere Application

Note: Be aware that the values provided below are default paths and may vary
depending on your installation. They serve as a basic pointer only.

 Chapter 2. Tivoli Dynamic Workload Broker architecture 73

Server instances. In the current release the Integrated Solutions Console must
use its own embedded WebSphere Application Server, and this cannot be
shared with the ITDWB enterprise application (Tivoli Dynamic Workload Broker
server).

Figure 2-16 List of server components (WebSphere Management Console)

74 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Default locations of server components
Table 2-3 and Table 2-4 on page 76 show the default paths for server
components on Windows, UNIX, and Linux platforms.

Table 2-3 Default server paths on Windows platform

Important: In the tables below we point to directories for WebSphere
Application Server enterprise applications. We show these directories
because we want to stress what server components are independent
enterprise applications. We do not recommend modifying any file within those
directory trees, nor to invoke any command from them. Doing so could cause
your Tivoli Dynamic Workload Broker server to become unstable.

Component Path

WebSphere installation directory C:\Program Files\IBM\WebSphere\
AppServer

Tivoli Dynamic Workload Broker
components directories (WebSphere
enterprise applications)

C:\Program Files\IBM\WebSphere\
AppServer\profiles\default\
installedApps\<node_cell_name>\
ITDWB.ear

Tivoli Dynamic Workload Broker
installation directory (command line
binaries and others)

C:\Program Files\IBM\ITDWB\Server

Tivoli Dynamic Workload Broker TWS
Agent

C:\Program Files\IBM\WebSphere\
AppServer\profiles\default\
installedApps\<node_cell_name>\
TWSAgent.ear

ISC WebSphere installation directory C:\Program Files\IBM\ISC\AppServer

ISC enterprise application directory C:\Program Files\IBM\ISC\
AppServer\profiles\default\
installedApps\DefaultNode

Note: The value of <node_cell_name> used in Table 2-3 on page 75 typically
consists of machine’s host name keywords Node, Cell, and a number. In our
scenario, the default generated value for machine ATHENS was
athensNode01Cell.

 Chapter 2. Tivoli Dynamic Workload Broker architecture 75

Table 2-4 Default server paths on UNIX and Linux platforms

Component Path

WebSphere installation directory /usr/IBM/WebSphere/AppServer (AIX)
/opt/IBM/WebSphere/AppServer (other
UNIXes and Linux)

Tivoli Dynamic Workload Broker
components directories (Websphere
enterprise applications)

/usr/IBM/WebSphere/AppServer/
profiles/default/ installedApps/
<node_cell_name>/ITDWB.ear
(AIX)

/opt/IBM/WebSphere/AppServer/
profiles/default/ installedApps/
<node_cell_name>/ITDWB.ear
(other UNIXes and Linux)

Tivoli Dynamic Workload Broker
installation directory (command-line
binaries and others)

/opt/IBM/ITDWB/Server

Tivoli Dynamic Workload Broker TWS
Agent

/usr/IBM/WebSphere/AppServer/
profiles/default/ installedApps/
<node_cell_name>/TWSAgent.ear
(AIX)

/opt/IBM/WebSphere/AppServer/
profiles/default/
installedApps/<node_cell_name>/
TWSAgent.ear
(other UNIXes and Linux)

ISC WebSphere installation directory /opt/IBM/ISC/AppServer

ISC enterprise application directory /usr/IBM/ISC/AppServer/IBM/ISC/
AppServer/profiles/default/
installedApps/DefaultNode (AIX)

/opt/IBM/ISC/AppServer/IBM/ISC/
AppServer/profiles/default/
installedApps/DefaultNode (other UNIXes
and Linux)

76 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

2.9.2 Locations of agent components

Table 2-5 and Table 2-6 show the default paths for agent components on
Windows and UNIX platforms.

Table 2-5 Default agent paths on Windows platform

Table 2-6 Default agent paths on UNIX and Linux platforms

2.9.3 Location of certificates and private keys

In this section we list the default keystore locations. We provide two tables, listing
the keystores used in a client network and agent network, as described in “Two
communication networks” on page 53.

Component Path

Common Agent
(if installed with Tivoli Dynamic Workload
Broker agent)

C:\Program Files\IBM\ITDWB\Agent

Tivoli Dynamic Workload Broker agent C:\Program Files\IBM\ITDWB\Agent\ep\r
untime\agent\subagents

Component Path

Common Agent
(if installed with Tivoli Dynamic Workload
Broker Agent)

/opt/IBM/ITDWB/Agent

Tivoli Dynamic Workload Broker agent /opt/IBM/ITDWB/Agent/ep/runtime/
agent/subagents

 Chapter 2. Tivoli Dynamic Workload Broker architecture 77

Keystores for client network
Table 2-7 shows the location of the keystores of private keys and certificates
necessary on a client network for server-side SSL handshake. The keystores are
by default located on file systems as described in the table. They are provided
out-of-box and are not generated at installation time.

Table 2-7 Keystores for client network

Security file type Path and file name

Job Brokering Definition Console -
server’s certificate

<JBDC_install_dir>/Certs/
TDWBClientTrustFile.jks

Job Brokering Definition Console - client’s
private key

<JBDC_install_dir>/Certs/
TDWBClientKeyFile.jks

Web Console installed within Integrated
Solutions Console - server’s certificate

<ISC_WebSphere_install_dir>/ISC/
AppServer/profiles/default/etc/
TDWBClientTrustFile.jks

Web Console installed within Integrated
Solutions Console - client’s private key

<ISC_WebSphere_install_dir>/ISC/
AppServer/profiles/default/etc/
TDWBClientKeyFile.jks

Command-line interface installed on
server - servers’s certificate

<ITDWB_server_install_dir>/Certs/
TDWBClientTrustFile.jks

Command-line interface installed on
server - client’s private key

<ITDWB_server_install_dir>/Certs/
TDWBClientKeyFile.jks

Clients’ certificates stored on server <ITDWB_server_install_dir>/Certs/
TDWBServerTrustFile.jks

Server’s private key <ITDWB_server_install_dir>/Certs/
TDWBServerKeyFile.jks

78 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Keystores for agent network
Table 2-8 shows the location of the keystores of private keys and certificates
necessary on agent network for a mutual SSL handshake. The keystores are by
default located on file systems, as described in the table. Private keys and
certificates are generated by Agent Manager’s Certification Authority in the
registration time.

Table 2-8 Keystores fo agent network

Security file type Path and file name

Certificate of Agent Manager’s
Certification Authority transferred to Tivoli
Dynamic Workload Broker server at start
of the registration.

<ITDWB_server_install_dir>/
ResourceManager\cert\agentTrust.jks

Certificate and private key issued by
Agent Manager’s Certification Authority for
Tivoli Dynamic Workload Broker server.

<ITDWB_server_install_dir>/
ResourceManager\cert\agentKeys.jks

Certificate of Agent Manager’s
Certification Authority transferred to
Common Agent at start of the registration.

<common_agent_install_dir>/ep/runtime/
agent/cert/agentTrust.jks

Certificate and private key issued by
Agent Manager’s Certification Authority for
Common Agent.

<common_agent_install_dir>/ep/runtime/
agent/cert/agentKeys.jks

Certificate of Agent Manager. <ITDWB_server_install_dir>/
AgentManager/certs/
agentManagerTrust.jks

Private key of Agent Manager. <ITDWB_server_install_dir>/
AgentManager/certs/
agentManagerKeys.jks

Certificates of Agent Manager’s
Certification Authority transferred from
Agent Manager to Common Agent or
Tivoli Dynamic Workload Broker server at
start of registration. This certificate is used
by agent (resource manager) for initiating
server-side SSL handshake.

<ITDWB_server_install_dir>/
AgentManager/certs/agentTrust.jks

Certificate and private key of Agent
Manager’s Certification authority.

<ITDWB_server_install_dir>/
AgentManager/certs/CARootKeyRing.jks

Certificate Revocations List of Agent
Manager’s Certification Authority.

<ITDWB_server_install_dir>/
AgentManager/certs/
CertificateRevocationList

 Chapter 2. Tivoli Dynamic Workload Broker architecture 79

80 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Chapter 3. Tivoli Dynamic Workload
Broker installation

In this chapter we provide high-level technical information about the required
software needed before the installation of the Tivoli Dynamic Workload Broker
components. This chapter also contains the installation steps of typical and
custom setups.

In this chapter the following topics are discussed:

� “Introduction” on page 82
� “Planning for installation” on page 83
� “Installation” on page 91
� “Uninstallation” on page 137

3

© Copyright IBM Corp. 2007. All rights reserved. 81

3.1 Introduction

For a completely functional Tivoli Dynamic Workload Broker scheduling network
integrated with Tivoli Workload Scheduler there are nine Tivoli Dynamic
Workload Broker components that need to be installed. Some of the components
will be installed by default if the typical installation is performed and some
components can be installed on separate machines. The purpose of this
installation documentation is to present the components to install, the
prerequisites, the order of install, and a brief explanation of how the components
interrelate so that install planning can be accomplished quickly.

This is a list of the Tivoli Dynamic Workload Broker components listed in the
order of when they should be installed:

1. Tivoli Dynamic Workload Broker server
2. Tivoli Dynamic Workload Broker Web Console
3. Tivoli Dynamic Workload Broker Job Brokering Definition Console
4. Tivoli Dynamic Workload Broker Broker agent

This is a list of the Tivoli Dynamic Workload Broker components and their sub
components. The list shows what order components will be installed in if the
typical installation is performed, and this is the order that will need to be
performed if performing the install using a custom install.

1. Tivoli Dynamic Workload Broker server
– Tivoli Agent Manager database
– Tivoli Agent Manager
– Tivoli Dynamic Workload Broker server database
– Tivoli Dynamic Workload Broker server
– Tivoli Workload Scheduler agent

2. Tivoli Dynamic Workload Broker Web Console
– Integrated Solutions Console (ISC)
– Tivoli Dynamic Workload Broker Web Console

3. Tivoli Dynamic Workload Broker Job Brokering Definition Console
4. Tivoli Dynamic Workload Broker agent

This is the list of Tivoli Dynamic Workload Broker components with sub
components and software prerequisites:

� Tivoli Dynamic Workload Broker server

– Tivoli Agent Manager database

• Prerequisite: DB2 (Server or Client)

– Tivoli Agent Manager

• Prerequisite: WebSphere Application Server 6.0.2.11

82 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

– Tivoli Dynamic Workload Broker server database

• Prerequisite: DB2 (Can be the same as the one used for Tivoli Agent
Manager database)

– Tivoli Dynamic Workload Broker server

• Prerequisite: WebSphere Application Server 6.0.2.11.

• Prerequisite: Tivoli Agent Manager

– Tivoli Workload Scheduler agent

• Prerequisite: Tivoli Dynamic Workload Broker server

� Tivoli Dynamic Workload Broker Web Console

– Integrated Solutions Console (ISC)

– Tivoli Dynamic Workload Broker Web Console

• Prerequisite/Corequisite: Integrated Solutions Console (ISC)

� Tivoli Dynamic Workload Broker Job Brokering Definition Console

� Tivoli Dynamic Workload Broker agent

3.2 Planning for installation

Prior to approaching the Tivoli Dynamic Workload Broker component installation
there are a couple of components that have specific software requirements. DB2
UDB must be installed prior to installing the Tivoli Agent Manager Database and
the Tivoli Dynamic Workload Broker server database. WebSphere Application
Server V 6.0.2.11 must be installed so that Tivoli Agent Manager and the Tivoli
Dynamic Workload Broker server can be installed.

3.2.1 Tivoli Dynamic Workload Broker software prerequisites

In this section we discuss the Tivoli Dynamic Workload Broker software
prerequisites.

Note: Oracle support for the Tivoli Dynamic Workload Broker server
will be available in Tivoli Dynamic Workload Broker V1.2.

Note: If the Tivoli Dynamic Workload Broker server is installed on
the same host as the Tivoli Agent Manager then the same
WebSphere Application server will be used.

 Chapter 3. Tivoli Dynamic Workload Broker installation 83

DB2
The following components must have an existing DB2 Server or client installed:

� Tivoli Agent Manager database
� Tivoli Dynamic Workload Broker server database

DB2 Versions
The versions are:

� DB2 Universal Database (UDB) Version 8.2 client or server with Fix Pack 1 or
later

� DB2 Universal Database Version 8.1 client or server with Fix Pack 8 or later

Installing DB2 server or client considerations
When your required level of reliability, availability, and scalability are met by a
locally installed database on the same machine as the Tivoli Dynamic Workload
Broker server or even when dictated by a remote database, which might even be
partitioned across a number of nodes in a cluster, DB2 Universal Database
meets these requirements.

To obtain the system prerequisites for DB2 (UDB) installations for operating
systems that support the Tivoli Dynamic Workload Broker server, see:

� AIX:

http://www-1.ibm.com/support/docview.wss?rs=71&uid=swg21181544

� Linux:

http://www-306.ibm.com/software/data/db2/linux/validate/platdist82.html

� Windows:

http://www-1.ibm.com/support/docview.wss?rs=71&uid=swg21176759

For the most up-to-date operating system information see:

http://www.ibm.com/software/data/db2/udb/sysreqs.html

Note: DB2 UDB Version 8.1 Fixpack 7 is equivalent to DB2 UDB Version 8.2
GA. DB2 UDB Version 8.1 Fixpack 8 is also known as Version 8.2 Fixpack 1.
Version 8.1 Fixpack 9 is also known as Version 8.2 Fixpack 2, and so on.

Note: Known issues for DB2 on AIX 4.3.3, 5.1, 5.2, and 5.3 are discussed
at:

http://www-1.ibm.com/support/docview.wss?rs=71&uid=swg21165448

84 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

http://www-1.ibm.com/support/docview.wss?rs=71&uid=swg21165448
http://www-1.ibm.com/support/docview.wss?rs=71&uid=swg21181544
http://www-306.ibm.com/software/data/db2/linux/validate/platdist82.html
http://www-1.ibm.com/support/docview.wss?rs=71&uid=swg21176759
http://www.ibm.com/software/data/db2/udb/sysreqs.html
http://www.ibm.com/software/data/db2/udb/sysreqs.html

One early space consideration for DB2 is the install location for the server or
client. The location on UNIX systems cannot be modified:

� AIX: /usr/opt/db2_08_01
� Linux: /opt/IBM/db2/V8.1

WebSphere Application Server
WebSphere Application Server (WAS) is the home to both the Tivoli Agent
Manager and the Tivoli Dynamic Workload Broker server applications. These
applications are recommended to be installed to a single WAS on the same
machine.

� WebSphere Application Server version

WebSphere Application Server, Version 6.0, 32-bit version, with Refresh Pack
2 and Fix Pack 11.

� WebSphere patch image locations

– 6.0.2: WebSphere Application Server V6.0 Refresh Pack 2:

http://www-1.ibm.com/support/docview.wss?rs=180&uid=swg24010066

– 6.0.2.11: WebSphere Application Server V6.0.2 Fix Pack 11:

http://www-1.ibm.com/support/docview.wss?rs=180&uid=swg24012484

WebSphere patch install instructions
Refer to the readme documents for specific installation instructions:

� 6.0.2: WebSphere Application Server V6.0 Refresh Pack 2:

http://www-1.ibm.com/support/docview.wss?rs=180&uid=swg27006336

� 6.0.2.11: WebSphere Application Server V6.0.2 Fix Pack 11:

http://www-1.ibm.com/support/docview.wss?rs=180&uid=swg27007828

Important steps for each fixpack installation are found in the readme files. For the
instructions for UNIX include:

1. Run the backupConfig command to back up configuration files. See “Backing
up and restoring administrative configurations” in the online information
center.

Note: Tivoli Agent Manager is installed along with the Tivoli Dynamic
Workload Broker server by default (using the typical installation). If the Tivoli
Agent Manager and the Tivoli Dynamic Workload Broker server are installed
on separate hosts, then consider the Tivoli Agent Manager as a prerequisite of
the Tivoli Dynamic Workload Broker server.

 Chapter 3. Tivoli Dynamic Workload Broker installation 85

http://www-1.ibm.com/support/docview.wss?rs=180&uid=swg27007828
http://www-1.ibm.com/support/docview.wss?rs=180&uid=swg27006336
http://www-1.ibm.com/support/docview.wss?rs=180&uid=swg24010066
http://www-1.ibm.com/support/docview.wss?rs=180&uid=swg24012484

2. Back up and remove the older updateinstaller directory. For example:

a. cd /usr/IBM/WebSphere/AppServer

b. tar -cvf updateinstaller_old.tar updateinstaller

Back the updateinstaller directory recursively using the tar create feature.

c. rm -r updateinstaller

3. Extract the fixpack tar image in the install_root directory. For example:

a. cd /usr/IBM/WebSphere/AppServer

b. # tar -xvf /tmp/downloads/6.0-WS-WAS-AixPPC32-RP0000002.tar

The Update Installer for WebSphere Software is in the
install_root/updateinstaller directory. The maintenance package is in the
install_root/updateinstaller/maintenance directory.

The installation of the WebSphere Application Server is a prerequisite for all the
applications requiring an application server:

� Tivoli Dynamic Workload Broker server
� Tivoli Agent Manager

WebSphere Application Server installation considerations
WebSphere Application Server V6.0.2 hardware requirements summary can be
found at:

http://www-1.ibm.com/support/docview.wss?rs=180&uid=swg27007250

WebSphere Application Server V6.0.2 detailed system requirements can be
found at:

http://www-1.ibm.com/support/docview.wss?rs=180&uid=swg27007256

3.2.2 Tivoli Dynamic Workload Broker hardware prerequisites

In this section we discuss the hardware prerequisites for the Tivoli Dynamic
Workload Broker.

Note: Tivoli Dynamic Workload Broker running on 64 bit computers is
supported only if the IBM WebSphere Application Server Java Virtual Machine
is the 32-bit version

86 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

http://www-1.ibm.com/support/docview.wss?rs=180&uid=swg27007250
http://www-1.ibm.com/support/docview.wss?rs=180&uid=swg27007256

Supported operating systems
Table 3-2 on page 89 shows the supported operating system for each main
component or prerequisite of Tivoli Dynamic Workload Broker.

Table 3-1 Supported operating systems

Tivoli
Dynamic
Workload
Broker server

Tivoli
Dynamic
Workload
Broker
agents
(endpoints)

Tivoli
Dynamic
Workload
Broker Job
Brokering
Definition
Console

Tivoli
Dynamic
Workload
Broker Web
Console

AIX

AIX 5.2 Yes Yes No Yes

AIX 5.3 Yes Yes No Yes

Linux

SuSe Linux Enterprise Server
(SLES) 8/UnitedLinux (UL) 1.0
for IA32

Yes Yes Yes Yes

SuSe Linux Enterprise Server
(SLES) 8/UL 1.0 for s/390 and
zSeries®

Yes Yes No Yes

SLES 8/UL 1.0 for pSeries®,
64-bit

Yes Yes No Yes

SLES 8/UL 1.0 for iSeries® No No No Yes

SLES 9 for IA32 Yes Yes Yes Yes

SLES 9 for s/390 and zSeries Yes Yes No Yes

SLES 9 with SP1, for pSeries,
64-bit

Yes Yes No Yes

SLES 9 for iSeries No No No Yes

RHEL AS+ 3.0 IA32 Yes Yes Yes Yes

RHEL 3.0 for S/390® and
zSeries

Yes Yes No Yes

RHEL 3.0 for pSeries, 64-bit Yes Yes No Yes

RHEL 3.0 for iSeries No No No Yes

 Chapter 3. Tivoli Dynamic Workload Broker installation 87

RHEL 4.0 for IA32 Yes Yes Yes Yes

RHEL 4.0 - AMD64 No Yes No No

RHEL 4.0 for s/390 and zSeries Yes Yes No Yes

RHEL 4.0 for pSeries, 64-bit Yes Yes No Yes

RHEL 4.0 for iSeries No No No Yes

Windows

Windows 2000 Server Yes Yes Yes Yes

Windows 2000 Advanced
Server

Yes Yes Yes Yes

Windows 2000 Data Center
Server

No No No No

Windows XP Professional No No Yes Yes

Windows Server® 2003
Standard

Yes Yes Yes Yes

Windows Server 2003
Enterprise

Yes Yes No Yes

Windows Server 2003
Enterprise AMD64/EM64T

No Yes No No

Notes:

1. Windows Hotfix 906868 is also a prerequisite when using any of the Windows Server 2003 systems.
2. The Tivoli Dynamic Workload Broker running on 64-bit computers is supported only if the IBM

WebSphere Application Server Java Virtual Machine is the 32-bit version.
3. VMware configurations with supported operating systems will be supported. Consider that the Tivoli

Dynamic Workload Broker component memory requirement.

Table 3-1 Supported operating systems

Tivoli
Dynamic
Workload
Broker server

Tivoli
Dynamic
Workload
Broker
agents
(endpoints)

Tivoli
Dynamic
Workload
Broker Job
Brokering
Definition
Console

Tivoli
Dynamic
Workload
Broker Web
Console

88 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

For system requirements and latest information about Tivoli Dynamic Workload
Broker, refer to the download document at the following link:

http://ibm.com/support/docview.wss?rs=3190&uid=swg24013539

Memory, disk space, and install authority prerequisites
Table 3-2 lists the memory, disk space, and install authority prerequisites for
Tivoli Dynamic Workload Broker.

Table 3-2 Hardware and install authority prerequisites per component

3.2.3 Tivoli Dynamic Workload Broker network

The ideal Tivoli Dynamic Workload Broker network will have components
installed on different hosts in an effort to find a balance between minimizing
configuration complexity and maximizing performance. The following is an
example.

Tivoli Dynamic
Workload
Broker server

Tivoli Dynamic
Workload
Broker agents
(endpoints)

Tivoli Dynamic
Workload
Broker Job
Brokering
Definition
Console

Tivoli Dynamic
Workload
Broker Web
Console

Memory 2 GB or more per
processor 3 GB
recommended.

512 MB or more
per processor.

1 GB or more per
processor.

1 GB or more per
processor. 2 GB
recommended.

Pre-install disk space 600 MB free. 250 MB free. 300 MB free. 600 MB free.

Installed disk space 500 MB. 150 MB. 200 MB. 500 MB.

Install authority Log in as root
(UNIX),
administrator
(Windows).

Log in as root
(UNIX),
administrator
(Windows).

Log in as root
(UNIX),
administrator
(Windows).

Log in as root
(UNIX),
administrator
(Windows).

Note: The required amount of memory is for each component. If one installs
more than a single component on a computer then the amount of memory
specified for each component must be added together to obtain the total
memory requirement.

 Chapter 3. Tivoli Dynamic Workload Broker installation 89

http://ibm.com/support/docview.wss?rs=3190&uid=swg24013539

Let us suppose that we have the following systems:

� Three AIX 5.3 machines: AIX1, AIX2, and AIX3
� One Windows 2003 Advance Server host: W2K1
� Two RHEL AS+ 3.0 IA32: RHEL1 and RHEL2
� Ten Linux SLES 9 for IA32 machines: SLES1, SLES2...SLES10

We can install the Tivoli Dynamic Workload Broker components and
prerequisites as follows (see Figure 3-1 on page 91):

� DB2 Server on AIX1.

� Tivoli Dynamic Workload Broker server on AIX2. Install the DB2
Administrative Client and WebSphere Application Server as prerequisites.
Point to the DB2 Server on AIX1 for database connections. Subsequently, the
Tivoli Workload Scheduler Agent will be installed on this host.

� Tivoli Dynamic Workload Broker Web Console on RHEL1.

� Tivoli Dynamic Workload Broker Job Brokering Definition Console on W2K1.
Also consider the W2K1 system as a local desktop.

� Tivoli Dynamic Workload Broker agents on AIX3, RHEL2, SLES1,
SLES2...SLES10.

Note: Do not install a Tivoli Dynamic Workload Broker agent to a Tivoli
Dynamic Workload Broker server host. Having an agent on the server could
affect the resource availability calculations.

90 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Figure 3-1 Sample placement of Tivoli Dynamic Workload Broker components

3.3 Installation

This section discusses the step-by-step installation of the Tivoli Dynamic
Workload Broker. Refer to IBM Tivoli Dynamic Workload Broker Installation and
Configuration, SC32-2282, for more information about these steps.

Job Brokering
Defintion Console

Tivoli Dynamic
Workload Broker

Web Console

TWS
Master Domin

Manager

TDWB Server

TDWB Server DB

Tivoli Agent Manager

Tivoli Agent Manager DB

TWS Agent

Suggested placement of Tivoli Dynamic Workload Broker (TDWB) components

DB2 Server

SLEC1 SLEC2 ... SLEC10 AIX3 RHEL2

TDWB Agents

AIX2 AIX1

W2K1

RHEL1

 Chapter 3. Tivoli Dynamic Workload Broker installation 91

3.3.1 Choosing the installation method

The are two methods of performing an installation:

� Installing with the installation wizard

Using this method, you can perform either a Typical installation or a Custom
installation.

� Silent installation

Using this method, you create a response file that contains all the installation
parameters. You then run the installation from the command line using the
response file.

There are two options for installing with the installation wizard:

� Typical install
� Custom install

If the installation fails, you can correct the error by resuming the installation. See
10.1.4, “Diagnose failure dialogue - using the step list” on page 493.

Default installation directories
Each component of the Tivoli Dynamic Workload Broker has its own default
installation directory. You can use Table 3-3 as a reference in your installation.
See also Table 2-3 on page 75, Table 2-4 on page 76, and Table 2-5 on page 77
for more details on the default installation locations.

Table 3-3 Default component installation locations

Tivoli Dynamic Workload Broker
component

Default installation directory

Server Windows: C:\Program Files\IBM\ITDWB\Server

UNIX: /opt/IBM/ITDWB\Server

Tivoli Agent Manager Windows: C:\Program
Files\IBM\ITDWB\Server\AgentManager

UNIX: /opt/IBM/ITDWB\Server\AgentManager

Web Console Windows: C:\Program Files\IBM\ISC

UNIX: /opt/IBM/ISC

 Job Brokering Definition Console Windows: C:\Program Files\IBM\ITDWB\JBDC

UNIX: /opt/IBM/ITDWB\JBDC

92 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Locating the installation programs
The Tivoli Dynamic Workload Broker server installation programs are located in
the root directory of the first CD.

There are seven CDs in the package for the Tivoli Dynamic Workload Broker.
Each CD contains the launchpad, which is used to install each component. For
example, you can initiate the launchpad from any of the seven CDs, and when
you choose to install a component that is located on a different CD, you will be
prompted to insert the correct one.

Starting the launchpad
The installation program uses a Java Virtual Machine that requires 10 MB of free
space in the operating system’s default temporary directory. You can start the
install via the launchpad, or access each component’s individual setup file.

The procedure for starting the launchpad installation program is:

1. With the correct CD in the drive, start the launchpad:

– Windows - If the launchpad does not start automatically, run the
launchpad.exe file from the root directory of the CD.

– UNIX - Run the launchpad.sh file from the root directory of the CD.

Agent Windows: C:\Program Files\IBM\ITDWB\Agent

UNIX: /opt/IBM/ITDWB\Agent

Tivoli Dynamic Workload Broker
component

Default installation directory

 Chapter 3. Tivoli Dynamic Workload Broker installation 93

2. The launchpad is displayed, as shown in Figure 3-2.

Figure 3-2 The installation launchpad

3. Click Install IBM Tivoli Dynamic Workload Broker on the left side of the
screen.

From this screen you have the following options:

– Install the IBM Tivoli Dynamic Workload Broker server

– Install the IBM Tivoli Dynamic Workload Broker Web Console

– Install the IBM Tivoli Dynamic Workload Broker Job Brokering Definition
Console

– Install the IBM Tivoli Dynamic Workload Broker agent

94 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

3.3.2 Installing the Tivoli Dynamic Workload Broker server with the
installation wizard

Use the following steps to install any of the Tivoli Dynamic Workload Broker
server components using the installation wizard:

1. Start the installation launchpad. Select the language in which you want the
wizard to display, then click OK. The wizard displays the Welcome window.

2. Click Next to continue with the installation. You are then prompted to read and
accept the license agreement. You also have the choice to print out the
license agreement. To continue, check I accept both the IBM and non-IBM
terms, then click Next.

The installation directory window is displayed, as shown in Figure 3-3.

Figure 3-3 The installation directory window

 Chapter 3. Tivoli Dynamic Workload Broker installation 95

3. You can either accept the default directory displayed or click Browse to select
your desired installation location. Once that is decided, click Next to continue.

The installation choice window is displayed (Figure 3-4).

Figure 3-4 The installation choice window

Here is where you choose whether you would like a typical or custom install.

– Typical

A typical installation installs every component required on the same
computer, except for the following:

• Enterprise Workload Manager enablement
• Tivoli Workload Scheduler agent
• IBM Change and Configuration Management Database enablement
• Tivoli Provisioning Manager enablement

– Custom

A custom installation allows you to select each component that you would
like to install. You would use the custom installation if you want to install
components on more than one computer.

96 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

When using the typical installation option, the following features are always
installed and configured:

– Tivoli Agent Manager
– Tivoli Agent Manager database
– IBM Tivoli Dynamic Workload Broker server
– IBM Tivoli Dynamic Workload Broker database

If you plan to install the Agent Manager before you install the Tivoli Dynamic
Workload Broker server, or you want to install the Agent Manager on a
separate computer, you would use the custom installation option.

We proceed with the Typical install option. Custom install is covered in
“Custom install” on page 108.

4. Once the Typical option has been selected, the DB2 server information
window is displayed, as shown in Figure 3-5.

Figure 3-5 The DB2 server information window

You will need to fill out the following information:

– DB2 Driver Location

The directory where the client or server version of DB2 is installed.

• Windows: C:\Program Files\IBM\SQLLIB
• UNIX: /usr/...

 Chapter 3. Tivoli Dynamic Workload Broker installation 97

– DB2 Server Hostname

The name of the host that you are going to connect to DB2. The default is
the fully qualified host name of the local computer. This can be either a
DB2 server or client.

– DB2 Port

The port on which DB2 will listen. The default is 50000.

– Database User and Database User Password

The DB2 instance owner and password for an account to be created on
this computer. The user ID that you enter here is used for connection to
the DB2 database. The predefined user IDs are:

• Windows: db2admin
• UNIX: db2inst1

– DB2 local user (UNIX only)

The user on the local operating system that is running the DB2 client
binaries

– Database name

The name of the Tivoli Dynamic Workload Broker database. There are
restrictions to the length of the database name. For more information
about this, refer to your DB2 manuals at:

http://publib.boulder.ibm.com/infocenter/db2luw/v8//index.jsp

The Tivoli Dynamic Workload Broker database will be created on the
computer where the DB2 server resides. The default database name of
TDWB will be used unless otherwise specified. If the database exists, the
existing database is used and the Database Name field is not displayed.

5. Once everything is filled out, click Next. A check is performed to establish a
connection with the DB2 database server. If no connection can be made, an
error message is displayed. Make sure that the DB2 database is started.
When a connection to the DB2 database is established, the next window is
displayed.

Note: You can use a different ID. If you do, the user ID must exist in the
DB2 database and must be configured in DB2 and on the DB2 server
prior to this install. If this user is not an administrator, you will need to
specify an administrator account on the next screen.

98 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

http://publib.boulder.ibm.com/infocenter/db2luw/v8//index.jsp

If a Tivoli Dynamic Workload Broker database has not previously been
installed, the DB2 additional information window is displayed. See Figure 3-6.

Figure 3-6 The DB2 additional information window

6. If required, specify the Table Space, Table Space Directory, Temporary Table
Space, and Temporary Table Space Directory. Otherwise leave the default
values.

7. If you want to change the DB2 user or have not specified an administrator in
the previous panel, select the Use the DB2 user credential to create the
database check box and type in the user name and password for the user to
create the database. If the user you specified previously is an administrator,
you can use this user. The user ID that you enter here is used for the
connection to the DB2 database. The predefined user IDs are:

– Windows: db2admin
– UNIX: db2inst1

You can use a different ID. If you do, the user ID must exist in the DB2
database and must be configured in DB2 and on the DB2 server prior to this
install. Click Next.

 Chapter 3. Tivoli Dynamic Workload Broker installation 99

The WebSphere Application environment window is displayed. See
Figure 3-7.

Figure 3-7 The WebSphere Application environment window

8. Check the following WebSphere information displayed in the window:

– Base Install Location

The directory where the WebSphere Application Server is installed.

– Profile Name

The existing name of a WebSphere Application Server profile. The profile
used here must exist.

– Server Name

The existing name of the WebSphere Application Server.

– Cell

The cell name. This is automatically discovered if a valid directory is
specified for the Base Install Location.

– Node

The WebSphere node name. This is automatically discovered if a valid
directory is specified for the base install location.

Click Next.

100 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

The Tivoli Dynamic Workload Broker Ports window is displayed, as shown in
Figure 3-8.

Figure 3-8 The Tivoli Dynamic Workload Broker Ports window

9. This contains the values for the two ports used by Tivoli Dynamic Workload
Broker.

– TDWB Port

This value is used for insecure communications. The default is 9550.

– TDWB Secure Port

This value is used for secure (SSL) communications. The default is 9551.

The default values can be changed if needed. Click Next.

 Chapter 3. Tivoli Dynamic Workload Broker installation 101

The Agent Manager information window is displayed. See Figure 3-9.

Figure 3-9 The Agent Manager information window

10.You must supply all of the following information in this window:

– Agent Manager Agent Registration Password

The default password is changeme. This password is presented by a
common agent when it requests registration with the Agent Manager. This
password also locks the agentTrust.jks truststore file, which contains the
signer certificate for the Agent Manager.

– Retype Password

Retype the above password to confirm.

– Agent Manager Password

The default password is changeme. This is the Agent Manager’s SSL
password. This password locks the Agent Manager truststore and keystore
files, agentManagerTrust.jks and agentManagerKeys.jks.

– Retype Password

Retype the above password to confirm.

Note: Agent Manager passwords cannot contain the following
characters: > < “ = ; , ^ / & | £ and the space character.

102 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

– Agent Manager Registration Port

The port number for registration. The default is 9511. This port uses
server-side authentication.

– Agent Manager Secure Port

The port number for secure communications with client authentication by
2-way SSL. The default is 9512.

– Agent Manager Public Port

The port number for public communication, including the alternate port for
the agent recovery service. The default is 9513.

If you need to configure advanced installation settings, check Configure
advanced installation settings, then click Next.

11.If you checked Configure advanced installation settings, the Agent
Manager advanced installation settings window is displayed, as shown in
Figure 3-10.

Figure 3-10 The Agent Manager advanced installation settings window

You will need to supply the following information about this window:

– Certificate Authority Name

The name of the certificate authority. This value must be unique in your
environment.

– Certificate Authority Password

 Chapter 3. Tivoli Dynamic Workload Broker installation 103

The password for the certificate authority.

– Security Domain

The name of the security domain defined by the Agent Manager. The
security domain is used in the right-hand portion of the distinguished
name (DN) of every certificate issued by the Agent Manager. Typically, this
value is the registered domain name or contains the registered domain
name, but can be any value you chose. For example, for the computer
system myserver.ibm.com, the domain name might be ibm.com. This
value must be unique in your environment.

– Agent Manager Context Root

The name of the certificate authority. This value must be unique in your
environment. The default value is /AgentMgr. The context root is part of
the URL that common agents and resource managers use to connect to
the Agent Manager. For example, the context root is the underlined part of
the following:

http://bentley.tivlab.austin.ibm.com:9513/AgentMgr

Click Next.

12.If you checked Configure advanced installation settings the Agent
Manager deployment information window is displayed. You will need to supply
the following information on this window:

– Agent Manager host name

The fully qualified host name of the Agent Manager

– Cell

Specifies the name of the WebSphere cell where the Agent Manager
applications are installed

– Node

Specifies the name of the WebSphere node where the Agent Manager
applications are installed

– Server Name

The name of the WebSphere Application Server

Click Next.

Note: The Agent Manager host name must be resolved on the
endpoint, even if you want to use the IP address to indicate the Agent
Manager server. Ensure that the host file on the endpoint or the DNS
server is properly configured to resolve the Agent Manager host.

104 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

13.To complete the installation it is necessary to restart the WebSphere
Application Server. A window is displayed (Figure 3-11) asking whether you
want the server restarted automatically, or whether you want to restart the
server yourself at a later time. If you want the server restarted, and if the
WebSphere Application Server global security is enabled, you must provide
the WebSphere Application Server administrator user ID and password.
Select when you want the server restarted, then click Next.

Figure 3-11 Restart the Application Server

 Chapter 3. Tivoli Dynamic Workload Broker installation 105

The Installation Summary window is displayed, as shown in Figure 3-12.
Check the information displayed in the window. Ensure that there is enough
disk space available for the installation.

Figure 3-12 The Installation Summary window

14.Click Install.

15.When the installation progress window is displayed, if the uninstaller has not
yet been created, you can stop the installation at any time by clicking Cancel.
The installation will complete its current installation step, then suspend the
installation. You will be asked whether you want to cancel the installation. If
you choose Yes, the current installation is cancelled.

After the uninstaller has been created, if you click Stop when the installation
steps are in progress, you will be asked whether you want to stop the
installation after the current step. If you click Yes, the step completes and the
Diagnose Failure window is displayed. If you click No, the installation
resumes.

106 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

When the installation has successfully completed, an installation summary
screen (Figure 3-13) is displayed showing the operations that have been
performed during the installation.

Figure 3-13 The installation has successfully completed

16.Click Next.

 Chapter 3. Tivoli Dynamic Workload Broker installation 107

17.The installation completed window is displayed. Click Finish to close the
installer.

Figure 3-14 The installation completed window

Custom install
When using the custom install option, you have the option to create the following
features:

� Tivoli Agent Manager database
� Tivoli Agent Manager
� IBM Tivoli Dynamic Workload Broker database
� IBM Tivoli Dynamic Workload Broker server
� IBM Tivoli Dynamic Workload Broker extensions:

– Enterprise Workload Manager enablement
– Tivoli Workload Scheduler Agent
– IBM Change and Configuration Management Database enablement
– IBM Tivoli Provisioning Manager enablement

108 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

The custom installation is similar to the typical installation, except that you have
the choice of what Tivoli Dynamic Workload Broker features you want installed.

Complete the custom installation as follows:

1. When you select the custom installation, the features window is displayed.
See Figure 3-15.

Figure 3-15 Custom installation

Select the components and extensions you want to install.

Note: The Agent Manager is installed in two steps:

1. Tivoli Agent Manager Database

This step creates the database and tables.

2. Tivoli Agent Manager

This installs the enterprise application on WebSphere and creates
references to the database.

These steps must be performed in the above order for the Agent
Manager installation. The installation fails if the Tivoli Agent Manager is
installed before the Tivoli Agent Manager database. Also, the Tivoli
Agent Manager is a prerequisite of Tivoli Dynamic Workload Broker and
must be installed before or with the product.

 Chapter 3. Tivoli Dynamic Workload Broker installation 109

2. If you selected to install the Tivoli Dynamic Workload Broker Database, the
DB2 server information window is displayed. See Figure 3-16.

Figure 3-16 The DB2 server information window

You will need to fill out the following information:

– DB2 Driver Location

The directory where the client or server version of DB2 is installed.

• Windows: C:\Program Files\IBM\SQLLIB
• UNIX: /usr/...

– DB2 Server Hostname

The name of the host that you are going to connect to DB2. The default is
the fully qualified host name of the local computer. This can be either a
DB2 server or client.

– DB2 Port

The port on which DB2 will listen. The default is 50000.

– Database User and Database User Password

The DB2 instance owner and password for an account to be created on
this computer. The user ID that you enter here is used for connection to
the DB2 database. The predefined user IDs are:

• Windows: db2admin
• UNIX: db2inst1

110 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

– DB2 local user (UNIX only)

The user on the local operating system that is running the DB2 client
binaries.

– Database name

The name of the Tivoli Dynamic Workload Broker database. There are
restrictions to the length of the database name. For more information
about this, refer to your DB2 manuals.

The Tivoli Dynamic Workload Broker database is created on the computer
where the DB2 server resides. The default database name of TDWB is
used unless otherwise specified. If the database exists, the existing
database is used and the Database Name field is not displayed.

3. Once everything is filled out, click Next. A check is performed to establish a
connection with the DB2 database server. If no connection can be made, an
error message is displayed. Make sure that the DB2 database is started.
When a connection to the DB2 database is established, the next window is
displayed.

Note: You can use a different ID. If you do, the user ID must exist in the
DB2 database and must be configured in DB2 and on the DB2 server
prior to this install. If this user is not an administrator, you will need to
specify an administrator account on the next screen.

 Chapter 3. Tivoli Dynamic Workload Broker installation 111

4. If a Tivoli Dynamic Workload Broker database has not previously been
installed, the DB2 additional information window is displayed. See
Figure 3-17.

Figure 3-17 The DB2 additional information window

5. If required, specify the Table Space, Table Space Directory, Temporary Table
Space, and Temporary Table Space Directory. Otherwise leave the default
values.

If you want to change the DB2 user or have not specified an administrator in
the previous panel, select the Use the DB2 user credential to create the
database check box and type in the user name and password for the user to
create the database. If the user you specified previously is an administrator,
you can use this user. The user ID that you enter here is used for the
connection to the DB2 database. The predefined user IDs are:

– Windows: db2admin
– UNIX: db2inst1

You can use a different ID. If you do, the user ID must exist in the DB2
database and must be configured in DB2 and on the DB2 server prior to this
install. Click Next.

112 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

The WebSphere Application environment window is displayed. See
Figure 3-18.

Figure 3-18 The WebSphere Application environment window

6. Check the following WebSphere information displayed in the window:

– Base Install Location

The directory where the WebSphere Application Server is installed.

– Profile Name

The existing name of a WebSphere Application Server profile. The profile
used here must exist.

– Server Name

The existing name of the WebSphere Application Server.

– Cell

The cell name. This is automatically discovered if a valid directory is
specified for the base install location.

– Node

The WebSphere node name. This is automatically discovered if a valid
directory is specified for the base install location.

Click Next.

 Chapter 3. Tivoli Dynamic Workload Broker installation 113

The Tivoli Dynamic Workload Broker Ports window is displayed, as shown in
Figure 3-19.

Figure 3-19 The Tivoli Dynamic Workload Broker Ports window

This window contains the values for the two ports used by Tivoli Dynamic
Workload Broker.

– TDWB Port

This value is used for unsecure communications. The default is 9550.

– TDWB Secure Port

This value is used for secure (SSL) communications. The default is 9551.

The default values can be changed if needed.

Click Next.

7. If you selected to install the Tivoli Workload Scheduler Agent, the Tivoli
Scheduler Workload Agent configuration window is displayed.

Verify the information displayed in the window:

– TWS Workstation Name

Type the Tivoli Workload Scheduler name of this workstation. The name
cannot exceed 16 characters and cannot contain spaces. You can use the
default name suggested.

114 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

– TWS Master Domain Manager Name

The workstation name of the Tivoli Workload Scheduler master domain
manager. The name cannot exceed 16 characters and cannot contain
spaces. This is a required field.

– TWS Agent Port

The TCP/IP port number used by the instance being installed. The value
must be in the range of 1–65535. The default value is 31111.

8. If you selected to install the Tivoli Workload Scheduler Agent, the TWS Agent
Security Configuration window is displayed.

– ITDWB User Name

The user that is used by the Tivoli Workload Scheduler agent when
contacting the Tivoli Dynamic Workload Broker. The user must have at
least the submitter role. This user must already be defined in WebSphere
at installation time and also in the user registry. When you have completed
the installation, you must give this user at least a submitter role.

The user name entered here is written to the properties file. If required,
you can change the user at a later time by editing the properties file.

– ITDWB User Password

The password for the ITDWB user.

 Chapter 3. Tivoli Dynamic Workload Broker installation 115

9. If you selected to install the Tivoli Agent Manager, the Agent Manager
information window is displayed.

Figure 3-20 The Agent Manager information window

You must supply all of the following information in this window:

– Agent Manager Agent Registration Password

The default password is changeme. This password is presented by a
common agent when it requests registration with the Agent Manager. This
password also locks the agentTrust.jks truststore file, which contains the
signer certificate for the Agent Manager.

– Retype Password

Retype the above password to confirm.

– Agent Manager Password

The default password is changeme. This is the Agent Manager’s SSL
password. This password locks the Agent Manager truststore and keystore
files, agentManagerTrust.jks and agentManagerKeys.jks.

– Retype Password

Retype the above password to confirm.

Note: Agent Manager passwords cannot contain the following
characters: > < “ = ; , ^ / & | £ and the space character.

116 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

– Agent Manager Registration Port

The port number for registration. The default is 9511. This port uses
server-side authentication.

– Agent Manager Secure Port

The port number for secure communications with client authentication by
2-way SSL. The default is 9512.

– Agent Manager Public Port

The port number for public communication, including the alternate port for
the agent recovery service. The default is 9513.

If you need to configure advanced installation settings, check Configure
advanced installation settings, then click Next.

10.If you selected to install the Tivoli Agent Manager, and you checked
Configure advanced installation settings, the Agent Manager advanced
installation settings window is displayed. See Figure 3-21.

Figure 3-21 the Agent Manager advanced installation settings window

You will need to supply the following information on this window:

– Certificate Authority Name

The name of the certificate authority. This value must be unique in your
environment.

 Chapter 3. Tivoli Dynamic Workload Broker installation 117

– Certificate Authority Password

The password for the certificate authority.

– Security Domain

The name of the security domain defined by the Agent Manager. The
security domain is used in the right-hand portion of the distinguished
name (DN) of every certificate issued by the Agent Manager. Typically, this
value is the registered domain name or contains the registered domain
name, but can be any value you chose. For example, for the computer
system myserver.ibm.com, the domain name might be ibm.com. This
value must be unique in your environment.

– Agent Manager Context Root

The name of the certificate authority. This value must be unique in your
environment. The default value is /AgentMgr. The context root is part of
the URL that common agents and resource managers use to connect to
the Agent Manager. For example, the context root is the underlined part of
the following:

http://pluto.rome.ibm.com:9513/AgentMgr

Click Next.

11.If you selected to install the Tivoli Agent Manager, and you checked
Configure advanced installation settings, the Agent Manager deployment
information window is displayed. You will need to supply the following
information on this window:

– Agent Manager host name

The fully qualified host name of the Agent Manager.

– Profile Directory

Specifies the directory of an existing profile that defines the WebSphere
Application Server run time.

– Cell

Specifies the name of the WebSphere cell where the Agent Manager
applications are installed.

– Node

Note: The Agent Manager host name must be resolved on the
endpoint, even if you want to use the IP address to indicate the Agent
Manager server. Ensure that the host file on the endpoint or the DNS
server are properly configured to resolve the Agent Manager host.

118 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Specifies the name of the WebSphere node where the Agent Manager
applications are installed.

– Server Name

The name of the WebSphere Application Server.

Click Next.

12.If you selected to install the IBM Enterprise Workload Manager (EWLM)
feature, the EWLM enablement configuration window is displayed. You will
need to supply the following information for the EWLM enablement
configuration:

– EWLM Domain Manager Name

The domain manager name of the Enterprise Workload Manager.

– EWLM Domain Manager Address

The fully qualified address of the Enterprise Workload Manager domain
manager.

– EWLM Domain Manager Port (LBP)

The port for the Enterprise Workload Manager

– EWLM weight scope

The weight scope for the Enterprise Workload Manager. This can be set
to:

• Application

When calculating weight scopes, the Enterprise Workload Manager
considers how the application is performing and takes into account
CPU usage and system metrics. This is the default, as TDWB is
instrumented to be monitored by EWLM.

• System

When calculating weight scopes, Enterprise Workload Manager
considers CPU usage and system metrics only.

– EWLM refresh interval (sec)

The refresh interval for the synchronization between the Tivoli Dynamic
Workload Broker network and computers registered to Enterprise
Workload Manager, in seconds. If a new computer is detected in the Tivoli
Dynamic Workload Broker network, the computer is added to the
Enterprise Workload Manager at the next synchronization. Similarly, if a
computer is removed from the Tivoli Dynamic Workload Broker network,
the computer is removed from the Enterprise Workload Manager at the
next synchronization.

Click Next.

 Chapter 3. Tivoli Dynamic Workload Broker installation 119

13.If you selected to install the IBM Change and Configuration Management
Database (CCMDB) enablement feature, the CCMDB Configuration window
is displayed. You need to supply the following information for the CCMDB
enablement configuration:

– CCMDB Server Hostname

The fully qualified host name of the CCMDB server

– CCMDB Server Port

The port of the CCMDB server

– CCMDB User

The CCMDB user

– CCMDB password

The password for the CCMDB user

Click Next.

14.If you selected to install the IBM Tivoli Provisioning Manager enablement
feature, the Tivoli Provisioning Manager Configuration window is displayed.
You need to supply the following information for the Tivoli Provisioning
Manager enablement configuration:

– TPM Server Hostname

The fully qualified host name or the IP address of the TPM server

– TPM Server port

The port of the TPM server

– TPM User

The TPM user

– TPM password

The password for the TPM user

Click Next.

120 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

15.To complete the installation it is necessary to restart the WebSphere
Application Server. A window is displayed asking whether you want the server
restarted automatically, or whether you want to restart the server yourself at a
later time. If you want the server restarted, and if the WebSphere Application
Server global security is enabled, you must provide the WebSphere
Application Server administrator user ID and password. Select when you want
the server restarted, then click Next. See Figure 3-22.

Figure 3-22 Restart the Application Server

 Chapter 3. Tivoli Dynamic Workload Broker installation 121

16.The Installation Summary window is displayed. Check the information
displayed in the window. Ensure that there is enough disk space available for
the installation.

Figure 3-23 The Installation Summary window

Click Install.

17.When the installation progress window is displayed, if the uninstaller has not
yet been created, you can stop the installation at any time by clicking Cancel.
The installation will complete its current installation step, then suspend the
installation. You will be asked if you want to cancel the installation. If you
choose Yes, the current installation is cancelled.

After the uninstaller has been created, if you click Stop when the installation
steps are in progress, you will be asked if you want to stop the installation
after the current step. If you click Yes, the step completes and the Diagnose
Failure window is displayed. If you click No, the installation resumes.

122 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

When the installation has successfully completed, an installation summary
screen is displayed showing the operations that have been performed during
the installation. See Figure 3-24.

Figure 3-24 Successful installation

Click Next.

 Chapter 3. Tivoli Dynamic Workload Broker installation 123

18.The Installation Completed window is displayed. Click Finish to close the
installer (Figure 3-25).

Figure 3-25 Installation completion

3.3.3 Installing the Tivoli Dynamic Workload Broker Web Console

Perform the following to install the Tivoli Dynamic Workload Broker Web Console:

1. Via the launchpad, click Install the IBM Tivoli Dynamic Workload Broker
Web Console. The introduction window is displayed. Click Next to continue
with the installation. The license agreement is displayed. You will then be
prompted to read and accept the license agreement. You also have the choice
to print out the license agreement. To continue, check I accept both the IBM
and non-IBM terms, then click Next.

2. The install then attempts to find whether an Integrated Solutions Console is
already installed. If one is found, a window is displayed to tell you that it will be
used to install the Tivoli Dynamic Workload Broker Web Console. If a console
cannot be found, a window is displayed stating:

No already installed stand-alone Integrated Solutions Console has
been found. A new stand-alone Integrated Solutions Console is going
to be installed for Tivoli Dynamic Workload Broker Web Console.

Click Next.

124 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

3. The installation directory window is displayed, as shown in Figure 3-26.

Figure 3-26 The installation directory window

4. You can either keep the default as listed, or click Browse to select a directory
or drive of your choice. Click Next to accept the directory shown.

Note: Restrictions when installing the Integrated Solutions Console:

� If an existing directory is selected, the directory cannot contain any of
the following files and directories:
– The files product.reg and isc.properties
– The directory /_uninst or a file name _uninst
– The directory /AppServer or a file named AppServer

� The length of the installation path must be 32 characters or less.
� Only 127 ASCII characters are supported for the installation path.

 Chapter 3. Tivoli Dynamic Workload Broker installation 125

5. The installation choice window is displayed, as shown in Figure 3-27.

Figure 3-27 The installation choice window

Select the method you prefer from the options:

– Default installation
– Advanced installation

Tivoli Dynamic Workload Broker Web Console - default
installation
With the default installation, there is no need to customize. The default
installation is as follows:

1. Once the default installation is chosen, the Tivoli Dynamic Workload Broker
Web Console host name window is displayed. Specify the host name and the
ports to be used as the default connection, or leave the default values. Click
Next.

2. To complete the installation, it is necessary to restart the ISC server. A
window is displayed with the option of automatically restarting the server.
Make your selection, then click Next.

126 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

The user name and password window is displayed (Figure 3-28).

Figure 3-28 The user name and password window

3. You can use an existing user, or have the installation create one for you.
Either way, type the password, then type the password again for confirmation.

Click Next.

Note: The password can only contain the following characters:

� a–z
� A–Z
� 0–9
� . (period)
� - (hyphen)
� _ (underscore)

 Chapter 3. Tivoli Dynamic Workload Broker installation 127

4. The verifying installation parameters window is displayed. Once the
parameters have been verified, the installation summary window is displayed,
as shown in Figure 3-29.

Figure 3-29 The verifying installation parameters window

Click Install.

5. When the installation progress window is displayed, you can stop the
installation at any time by clicking Cancel. The installation will complete its
current installation step, then suspend the installation. You will be asked if you
want to cancel the installation. If you choose Yes, the current installation is
cancelled and the installation summary window is displayed showing the
reason for the cancellation.

6. When the installation has successfully completed, an installation summary
screen is displayed showing the operations that have been performed during
the installation.

7. When the installation has completed successfully, and the installation
summary window is displayed, take note of the URLs displayed on this panel.
You will need this information to connect to the ISC later. Click Next. The
installation completed window is displayed. Click Finish to close the installer.

128 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Tivoli Dynamic Workload Broker Web Console - advanced
installation
You can use the advanced installation when you need to customize any of the
installation parameters.

1. When you select the advanced installation, the ISC TCP/IP ports window is
displayed. See Figure 3-30.

Figure 3-30 The ISC TCP/IP ports window

Specify the ports that you want to use for the operations console or accept the
default values. The default value for each port is shown in parentheses beside
the port name. Click Next.

 Chapter 3. Tivoli Dynamic Workload Broker installation 129

The embedded WebSphere Application Server TCP/IP ports window is
displayed, as shown in Figure 3-31.

Figure 3-31 The embedded WebSphere Application Server TCP/IP ports window

2. Specify the ports that you want to use for the operations console or accept the
default values. The default value for each port is shown in parentheses beside
the port name. Click Next.

130 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

The InfoCenter TCP/IP port and service window is displayed (Figure 3-32).

Figure 3-32 The InfoCenter TCP/IP port and service window

3. Specify the port for the InfoCenter help, then check if you want to register the
ISC and the InfoCenter Help as operating system services. If you do, type the
name for the ISC service and for the InfoCenter Help service, or accept the
default values. Click Next.

4. The Tivoli Dynamic Workload Broker Web Console default connection window
is displayed. Specify the host name and the port to be used as the default
connection, or leave the default values. Click Next.

5. To complete the installation, it is necessary to restart the ISC server. A
window is displayed with the option of automatically restarting the server.
Make your selection, then click Next.

 Chapter 3. Tivoli Dynamic Workload Broker installation 131

The user name and password window is displayed (Figure 3-33).

Figure 3-33 The user name and password window

6. You can use an existing user, or have the installation create one for you.
Either way, type the password, then type the password again for confirmation.

Click Next.

Note: The password can only contain the following characters:

� a–z
� A–Z
� 0–9
� . (period)
� - (hyphen)
� _ (underscore)

132 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

7. The verifying installation parameters window is displayed (Figure 3-34). Once
the parameters have been verified, the installation summary window is
displayed.

Figure 3-34 The verifying installation parameters window

Click Install.

8. When the installation progress window is displayed, you can stop the
installation at any time by clicking Cancel. The installation will complete its
current installation step, then suspend the installation. You will be asked if you
want to cancel the installation. If you choose Yes, the current installation is
cancelled and the installation summary window is displayed showing the
reason for the cancellation.

9. When the installation has successfully completed, an installation summary
screen is displayed showing the operations that have been performed during
the installation.

When the installation has completed successfully, and the installation
summary window is displayed, take note of the URLs displayed on this panel.
You will need this information to connect to the ISC later. Click Next. The
installation completed window is displayed. Click Finish to close the installer.

 Chapter 3. Tivoli Dynamic Workload Broker installation 133

3.3.4 Installing the Tivoli Dynamic Workload Broker Job Brokering
Definition Console

To install:

1. Via the launchpad, click Install the IBM Tivoli Dynamic Workload Broker
Job Brokering Definition Console. Select the language you want the wizard
to display during the install, then click OK. The introduction window is
displayed. Click Next to continue with the installation. The license agreement
is displayed. You will then be prompted to read and accept the license
agreement. You also have the choice to print out the license agreement. To
continue, check I accept both the IBM and non-IBM terms, then click Next.

The installation directory window is displayed, as seen in Figure 3-35.

Figure 3-35 The installation directory window

2. You can either keep the default as listed, or click Browse to select a directory
or drive of your choice. Click Next to accept the directory shown.

134 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

The installation summary window (Figure 3-36) is displayed showing the
directory, features, and total size of the install.

Figure 3-36 The installation summary window

3. Click Install. IBM Tivoli Dynamic Workload Broker Job Brokering Definition
Console will now be installed. When the installation progress window is
displayed, you can stop the installation at any time by clicking Cancel. The
installation will complete its current installation step, then suspend the
installation. You will be asked if you want to cancel the installation. If you
choose Yes, the current installation is cancelled and the installation summary
window is displayed showing the reason for the cancellation.

4. When the installation has completed successfully, and the installation
summary window is displayed, click Next. The installation completed window
is displayed. Click Finish to close the installer.

3.3.5 Installing the IBM Tivoli Dynamic Workload Broker agent

Use the following procedure to install the Tivoli Dynamic Workload Broker agent
component using the installation wizard:

1. Via the launchpad, click Install the IBM Tivoli Dynamic Workload Broker
Agent. Select the language you want the wizard to display during the install,
then click OK. The introduction window is displayed. Click Next to continue
with the installation. The license agreement is displayed. You will then be

 Chapter 3. Tivoli Dynamic Workload Broker installation 135

prompted to read and accept the license agreement. You also have the choice
to print out the license agreement. To continue, check I accept both the IBM
and non-IBM terms, then click Next.

2. The installation directory window is displayed.

You can either keep the default directory as listed, or click Browse to select a
directory or drive of your choice. Click Next to accept the directory shown.
The Disconnected Mode window is displayed.

3. The installation requires a connection to the Tivoli Agent Manager and also to
the Tivoli Dynamic Workload Broker server to be able to complete the
deployment.

If you are installing in a disconnected environment, you can check the Install
in Disconnected Mode check box. This lets you install the agent without any
connection checks being made. However, you will need to restart the agent
when the computer is connected to the environment.

4. The Tivoli Common Agent Information window is displayed.

Specify the label for the common agent and also the ports that the common
agent will use, or accept the default values. Click Next.

5. The Windows User Information window is displayed.

Specify the local system account, or check the Specify User Account check
box to specify a specific user ID. Click Next.

6. The Agent Manager Information window is displayed. Specify the following
information:

– Agent Manager host name

The fully qualified host name or the IP address of the Agent Manager
server. This host name is used by the agents and the Tivoli Dynamic
Workload Broker server to connect to the Tivoli Agent Manager.

– Agent Manager Registration Port

The port number for registration. The default is 9511. This port uses
server-side authentication.

– Agent Manager Public Port

The port number for public communication, including the alternate port for
the agent recovery service. The default is 9513.

– Agent Manager Agent Registration Password

The agent registration password. This password is presented by a
common agent when it requests registration with the Agent Manager. This
password also locks the agentTrust.jks truststore file, which contains the
signer certificate for the Agent Manager.

136 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

– Agent Manager Context Root

The context root of the application server. The default value is /AgentMgr.
The context root is part of the URL that common agents and resource
managers use to connect to the Agent Manager. For example, the context
root is the underlined part of the following URL:

http://bentley.tivlab.austin.ibm.com:9513/AgentMgr

Click Next.

7. The Tivoli Dynamic Workload Broker server Information window is displayed.
Specify the Tivoli Dynamic Workload Broker server host name and the port
that the server will use, or accept the default values. Click Next.

8. The installation summary window is displayed showing the installation
directory and the required disk space.

Click Install. The Tivoli Dynamic Workload Broker agent will now be installed.
When the installation progress window is displayed, you can stop the
installation at any time by clicking Cancel. The installation will complete its
current installation step, then suspend the installation. You will be asked if you
want to cancel the installation. If you choose Yes, the current installation is
cancelled and the installation summary window is displayed showing the
reason for the cancellation.

When the installation complete window is displayed showing the operations
that have been performed during the installation, click Next. The installation
completed window is displayed. Click Finish to close the installer.

3.4 Uninstallation

Using the Add/Remove Programs feature on Windows, uninstall the Tivoli
Dynamic Workload Broker components. For AIX, UNIX, and any other instance
where the software was installed with alternate methods, you need to use the
commands or utilities to uninstall the components.

If, for any reason, the uninstaller fails, the
<installation_directory>_uninst.resume directory is created. Before running the
uninstaller again, you should rename the _uninst.resume directory to _uninst and
then run the uninstaller with the -resume option. If the uninstall is still failing, then
follow the procedure for manual uninstallation.

 Chapter 3. Tivoli Dynamic Workload Broker installation 137

Manual uninstall of the Agent Manager
Use the following procedure for a manual uninstall of the Agent Manager:

1. Connect to AgentManager WebSphere Admin Console
(http://<am_machine>:9060/admin/).

2. From Applications → Enterprise Applications select AgentManager and
AgentRecoveryService, then click Remove File.

3. From Resources → JDBC™ Providers → AgentJDBCProvider → Data
sources → AgentRegistry → J2EE Connector Architecture (J2C)
authentication data entries select AgentRegistryDBAuth, then click
Delete.

4. From Resources → JDBC Providers → AgentJDBCProvider → Data
sources select AgentRegistry, then click Delete.

5. From Resources → JDBC Providers select AgentJDBCProvider, then click
Delete.

6. From Environment → Virtual Hosts select AgentManagerHost, then click
Delete.

7. At the top of the page, from the Messages box, click Save to apply the
changes made.

8. Restart WebSphere.

9. Remove the Agent Manager installation directory (see default installation
directories).

10. (Optional) Drop the Agent Manager database.

11.Remove all entries related to the AgentManager from vpd.properties and
vpd.script.

Manual uninstall of the Tivoli Dynamic Workload Broker server
and Tivoli Workload Scheduler agent
Use the following procedure for a manual uninstall of the Tivoli Dynamic
Workload Broker server and Tivoli Workload Scheduler agent:

1. Connect to the Tivoli Dynamic Workload Broker WebSphere Administration
Console (http://<itdwb>:9060/admin/).

2. From Applications → Enterprise Applications select ITDWB and
TWSAgent, then click Remove File.

Note: If the Agent Manager is the only component installed, and there are
no other references in the file, the vpd.properties file can be removed all
together.

138 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

http://<itdwb>:9060/admin/

3. From Resources → JDBC Providers → ITDWBProvider → Data
sources → ITDWBDataSource → J2EE Connector Architecture (J2C)
authentication data entries select ITDWBDB2Access, then click Delete.

4. From Resources → JDBC Providers → ITDWBProvider → Data sources
select ITDWBDataSource, then click Delete.

5. From Resources → JDBC Providers → select ITDWBProvider, then click
Delete.

6. From Resources → Asynchronous beans → Work Managers select
JobDispatcherWorkManager and ResourceAdvisorWorkManager, then
click Delete.

7. From Environment → Virtual Hosts select ITDWBHost, then click Delete.

8. At the top of the page, from the Messages box, click Save to apply the
changes made.

9. Restart the WebSphere Application Server.

10.Remove the Tivoli Dynamic Workload Broker installation directory (see
default directories in Table 3-3 on page 92).

11.(Optional) Drop the TDWB database.

12.Remove the /root/InstallShield/Universal/IBMVPD directory.

Note: If the Agent Manager and the Tivoli Dynamic Workload Broker
server are installed on a WAS profile that is dedicated to them, you can
avoid the above steps by deleting the WebSphere profile used for the
installation, then drop the databases as needed.

 Chapter 3. Tivoli Dynamic Workload Broker installation 139

140 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Chapter 4. Working with Tivoli Dynamic
Workload Broker

This chapter discusses the concepts and terminology used in Tivoli Dynamic
Workload Broker for running jobs. Tivoli Dynamic Workload Broker manages
computers and assigns jobs to run on the computers that it manages. It monitors
both the jobs and the computers. Computers managed by Tivoli Dynamic
Workload Broker can be added, removed, or changed without necessarily
changing the jobs.

This chapter contains the following sections:

� “Computers” on page 142
� “Working with jobs” on page 143
� “Using variables in job definitions” on page 155
� “Planning and choreography” on page 162
� “Resource matching criteria” on page 167
� “Monitoring computers and jobs” on page 171

4

© Copyright IBM Corp. 2007. All rights reserved. 141

4.1 Computers

The Tivoli Dynamic Workload Broker server is the product component that
manages the computers that run jobs. This component:

� Assigns resources to jobs
� Stores resources and job definitions in a database
� Maintains computer configuration information in a database

Computers are physical machines and are called workstations. The Tivoli
Dynamic Workload Broker Workload agent is installed on each computer
managed by the Tivoli Dynamic Workload Broker server.

Workload on the Tivoli Dynamic Workload Broker server should be minimized so
that it can monitor the computers and jobs without interference from the jobs
themselves. For this reason we do not recommend installation of the Tivoli
Dynamic Workload Broker Workload agent on the Tivoli Dynamic Workload
Broker server machine.

4.1.1 Resources

Computers are defined to the Tivoli Dynamic Workload Broker server as
resources. A resource is a physical computer or a logical resource. A logical
resource is an entity that can be associated with one or more computers to
represent applications, groups, licenses, servers, and other traits not associated
with a specific computer. Computers can be grouped together in a resource
group. A resource group can contain physical computers, logical resources, or
both.

Tivoli Dynamic Workload Broker assigns jobs to resources or resource groups.
This is known as the virtualization of resources and is the main idea of Tivoli
Dynamic Workload Broker. If a computer is removed, then you can change the
resources that reference the removed computer. In that way the job does not
need to be changed if the resource is updated to reference a different computer
upon which the job may run.

Note: A job definition that uses a resource group containing both computers
and logical resources will require two Job Submission Description Language
(JSDL) files (see 4.2.1, “Job definitions” on page 143 for a discussion of job
definitions and JSDL). It is simpler to have resource groups that contain only
computers or only logical resources, not both.

142 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

4.1.2 Tivoli Dynamic Workload Broker Tivoli Workload Scheduler
Agent plug-in

The Tivoli Dynamic Workload Broker Tivoli Workload Scheduler agent (also
referred to as the TWS Agent) is a bridge between the Tivoli Dynamic Workload
Broker server and a Tivoli Workload Scheduler domain manager. The TWS
Agent is installed on the Tivoli Dynamic Workload Broker server machine. This
machine is configured in Tivoli Workload Scheduler as a standard agent but does
not have all of the functions of a standard agent. The TWS Agent is not a Tivoli
Dynamic Workload Broker Workload Agent and is not one of the computers
managed by Tivoli Dynamic Workload Broker for job submission.

The TWS Agent is a plug-in for the Tivoli Dynamic Workload Broker server that
may be installed after the Tivoli Dynamic Workload Broker server installation
without uninstalling the Tivoli Dynamic Workload Broker server.

4.2 Working with jobs

A job is an executable file or a script that is assigned to a resource by the Tivoli
Dynamic Workload Broker server. The resource defines the Tivoli Dynamic
Workload Broker managed computers that may be used to run the job. Tivoli
Dynamic Workload Broker provides the status of the jobs and the managed
computers.

4.2.1 Job definitions

Each job is created as a job definition. Job definitions are stored in the Tivoli
Dynamic Workload Broker Job Repository DB2 database. A job definition is
written using Job Submission Description Language (JSDL) statements. This is
sometimes also called Job Submission Definition Language in the IBM manuals.

A job definition written in JSDL describes the job requirements for submission to
resources. The JSDL language contains a vocabulary and normative XML
schema that facilitate the expression of those requirements as a set of XML
elements. Knowledge of XML is helpful, but not essential, for working with job
definitions. Job definitions are created in files with the extension of jsdl.

 Chapter 4. Working with Tivoli Dynamic Workload Broker 143

Example 4-1 is an example of a job definition with:

� The name is testjob1.

� The executable is a file test1script.ksh that must exist on a Tivoli Dynamic
Workload Broker managed computer in the directory /tmp.

There is no resource specified so the Tivoli Dynamic Workload Broker server will
assign an available resource. There may be different versions of the script
/tmp/test1script.ksh on different computers managed by Tivoli Dynamic
Workload Broker. This could result in different job behavior for each job
submission depending upon the computer selected by Tivoli Dynamic Workload
Broker to run the job.

Example 4-1 Job definition jsdl file referencing an executable file

<?xml version="1.0" encoding="UTF-8"?>
<jsdl:jobDefinition
xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl"
xmlns:jsdle="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdle"
description=" Test Job 1" name="testjob1">
<jsdl:annotation>Job definition created within JBDC</jsdl:annotation>
<jsdl:application name="executable">
<jsdle:executable path="/tmp/test1script.ksh"/>
</jsdl:application>
</jsdl:jobDefinition>

Example 4-2 is an example of a job definition with:

� The name is “testjob2”.
� The executable is a script that is contained in the job definition.
� The resource to use is the computer “gridnode0135”.

The script to run is part of the job definition. You can change the resource and
the script will remain the same because it is part of the job definition.

Example 4-2 Job definition jsdl file containing an executable script

<?xml version="1.0" encoding="UTF-8"?>
<jsdl:jobDefinition
xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl"
xmlns:jsdle="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdle"
description="Test Job 2" name="testjob2">

<jsdl:application name="executable">

<jsdle:executable>
<jsdle:script>#!/bin/ksh

144 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

echo " test job 2: Hello World !!!"
</jsdle:script>
</jsdle:executable>

</jsdl:application>

<jsdl:resources>
<jsdl:candidateHosts>
<jsdl:hostName>gridnode0135</jsdl:hostName>
</jsdl:candidateHosts>
</jsdl:resources>

</jsdl:jobDefinition>

Example 4-3 is an example of a job definition where:

� The name is “testjob3”.
� The executable is a script that is contained in the job definition.
� The resource to use is the group “computers”.

In this example only physical computers are in the group “computers”.
Unpredictable results will occur if the group “computers” contains both physical
computers and logical resources.

Example 4-3 Job definition jsdl file with a computer resource group

<?xml version="1.0" encoding="UTF-8"?>
<jsdl:jobDefinition
xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl"
xmlns:jsdle="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdle"
description="resource group - only computers" name="testjob3">
<jsdl:application name="executable">
<jsdle:executable>
<jsdle:script>
#!/bin/ksh
echo "running test3 script"
</jsdle:script>
</jsdle:executable>
</jsdl:application>
<jsdl:resources>
<jsdl:group name="computers"/>
</jsdl:resources>
</jsdl:jobDefinition>

 Chapter 4. Working with Tivoli Dynamic Workload Broker 145

Example 4-4 is an example of a job definition where:

� The name is “testjob3”.
� The executable is a script that is contained in the job definition.
� The resource to use is the group “logical”.

In this example only logical resources are in the group “logical”. Unpredictable
results will occur if the group “logical” contains both physical computers and
logical resources.

Example 4-4 Job definition jsdl file with a logical resource group

<?xml version="1.0" encoding="UTF-8"?>
<jsdl:jobDefinition
xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl"
xmlns:jsdle="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdle"
description="resource group - only logical resources" name="testjob4">
<jsdl:application name="executable">
<jsdle:executable>
<jsdle:script>
#!/bin/ksh
echo "running testjob4"
</jsdle:script>
</jsdle:executable>
</jsdl:application>
<jsdl:resources>
<jsdl:relationship target="logicalresources" type="AssociatesWith"/>
</jsdl:resources>
<jsdl:relatedResources id="logicalresources" type="LogicalResource">
<jsdl:group name="logical"/>
</jsdl:relatedResources>
</jsdl:jobDefinition>

Note: The XML for use of a group with logical resources is more complicated
than that for use of a group with physical computers. Be sure to change the
XML statements accordingly when switching between a group with physical
computers to a group with logical resources for a job definition.

146 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

4.2.2 JBDC, Web Console, and command-line interface

The Tivoli Dynamic Workload Broker Job Brokering Definition Console (JBDC)
is an application that communicates with the Tivoli Dynamic Workload Broker
server and provides a graphical user interface (GUI) for creating job definitions.
See Figure 4-1.

Figure 4-1 Tivoli Dynamic Workload Broker JBDC graphical user interface

The JBDC can be installed on a user workstation that is separate from the Tivoli
Dynamic Workload Broker server and the Tivoli Dynamic Workload Broker agent
installed on each computer managed by the Tivoli Dynamic Workload Broker
server. You can create new job definitions and upload them to the Tivoli Dynamic
Workload Broker server or download/change/upload existing job definitions on
the Tivoli Dynamic Workload Broker server. A job definition must be stored in the
DB2 database by the Tivoli Dynamic Workload Broker server before it can be
run.

The JBDC GUI does not provide all of the JSDL elements that may be needed for
a job definition. One strategy to follow is to use the JBDC GUI to create the job

 Chapter 4. Working with Tivoli Dynamic Workload Broker 147

definition and then use the Tivoli Dynamic Workload Broker Web Console to edit
the job definition in order to add additional elements or make changes.

The Tivoli Dynamic Workload Broker Web Console, as shown in Figure 4-2, runs
on the Integrated Solutions Console (ISC). The Integrated Solutions Console will
be installed automatically if it is not already installed as part of the installation of
the Tivoli Dynamic Workload Broker Web Console. You can use the Tivoli
Dynamic Workload Broker Web Console to create or update a job definition from
the Tivoli Dynamic Workload Broker Web Console editor using JSDL statements.
This means that you will need to know the JSDL schema in order to create a job
definition or make significant changes to an existing job definition. However,
simple changes such as changing an executable file name may be possible
without knowledge of the JSDL schema.

Figure 4-2 Tivoli Dynamic Workload Broker Web Console

148 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

The Tivoli Dynamic Workload Broker command-line interface runs on the Tivoli
Dynamic Workload Broker server. The jobstore script can be used to create,
display, update, and delete Tivoli Dynamic Workload Broker job definitions. See
Figure 4-3.

Figure 4-3 Tivoli Dynamic Workload Broker CLI jobstore -get to display job definition

4.2.3 Job submission

Jobs may be submitted by:

� Tivoli Workload Scheduler job streams
� Tivoli Dynamic Workload Broker Web Console
� Tivoli Dynamic Workload Broker CLI (command-line interface)

Note: You need to run the tdwb_env script before using the Tivoli Dynamic
Workload Broker CLI. This script is found in the <install directory>/bin.

 Chapter 4. Working with Tivoli Dynamic Workload Broker 149

Tivoli Workload Scheduler job streams
Tivoli Dynamic Workload Broker jobs can be submitted in Tivoli Workload
Scheduler as job streams. This includes the ad hoc submission of a Tivoli
Workload Scheduler job definition. A Tivoli Workload Scheduler job definition
must run on the Tivoli Dynamic Workload Broker server upon which the TWS
Agent is installed. The TWS Agent is the communications bridge for the Tivoli
Dynamic Workload Broker job referenced in a Tivoli Workload Scheduler job
definition. It is important to note that Tivoli Dynamic Workload Broker does not
have the concept of job stream as found in Tivoli Workload Scheduler. There is a
combination of strengths of Tivoli Dynamic Workload Broker and Tivoli Workload
Scheduler. Tivoli Workload Scheduler controls the sequence and dependency
resolution within the job streams that contain Tivoli Workload Scheduler job
definitions that reference Tivoli Dynamic Workload Broker job definitions. Tivoli
Dynamic Workload Broker does the load balancing of Tivoli Dynamic Workload
Broker jobs when submitted by Tivoli Workload Scheduler.

150 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Tivoli Dynamic Workload Broker Web Console
The Tivoli Dynamic Workload Broker Web Console has a Tivoli Dynamic
Workload Broker job submission function, as shown in Figure 4-4. This allows
you to submit Tivoli Dynamic Workload Broker jobs directly to the Tivoli Dynamic
Workload Broker server in an independent fashion.

Figure 4-4 Tivoli Dynamic Workload Broker Web Console job definition Submit function

 Chapter 4. Working with Tivoli Dynamic Workload Broker 151

Tivoli Dynamic Workload Broker command-line interface
The Tivoli Dynamic Workload Broker CLI jobsubmit script can be used to submit
a Tivoli Dynamic Workload Broker job. See Figure 4-5. This allows you to use a
CLI tool instead of a graphical user interface to submit Tivoli Dynamic Workload
Broker jobs in an independent fashion.

Figure 4-5 jobsubmit -jdname to submit job definition loader1

4.2.4 Credentials for job definitions

The credential element of the Job Scheduling Definition Language specifies the
security credential for running the command specified in the job definition. This
element can be created in the Job Brokering Definition Console using the
Application tab.

The related elements are:

� userName - user name to be used when running the command

� groupName - group name to be used when running the command

� password - password to be used when running the command (This is not
encrypted in the job definition file.)

You can also define the user and password for J2EE jobs. You can use the Job
Brokering Definition Console Application tab for J2EE and specify the J2EE
credentials.

4.2.5 Tivoli Workload Scheduler and Tivoli Dynamic Workload Broker
job definitions

The concept of a job definition in Tivoli Workload Scheduler and in Tivoli
Dynamic Workload Broker is similar. In both products, a job definition defines

Note: For Windows the user ID and password are ignored in Tivoli Dynamic
Workload Broker V1.1.

152 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

what will run (the job) and where it will run (workstation in Tivoli Workload
Scheduler, resource in Tivoli Dynamic Workload Broker).

Ther Tivoli Workload Scheduler agent plug-in must be installed on the Tivoli
Dynamic Workload Broker server in order to provide a bridge from Tivoli
Workload Scheduler to Tivoli Dynamic Workload Broker for running jobs. In
addition, the Tivoli Dynamic Workload Broker server computer is configured as a
Tivoli Workload Scheduler Standard Agent in Tivoli Workload Scheduler.
However, only Tivoli Workload Scheduler job definitions with the Task field
containing a Tivoli Dynamic Workload Broker job definition reference will run on
the Tivoli Dynamic Workload Broker Tivoli Workload Scheduler Agent.

The Tivoli Dynamic Workload Broker Tivoli Workload Scheduler agent is not a
Tivoli Dynamic Workload Broker Workload Agent. When the Tivoli Workload
Scheduler job arrives, the Tivoli Dynamic Workload Broker server retrieves the
Tivoli Dynamic Workload Broker job definition referenced in the Tivoli Workload
Scheduler job definition Task field, assigns it a Tivoli Dynamic Workload Broker
resource, and runs it on a Tivoli Dynamic Workload Broker managed computer.

Tivoli Workload Scheduler sees the Tivoli Workload Scheduler job as running on
the Tivoli Dynamic Workload Broker server. The Tivoli Dynamic Workload Broker
server sees the Tivoli Dynamic Workload Broker job running on one of the Tivoli
Dynamic Workload Broker managed computers. The Tivoli Dynamic Workload
Broker server reports the status and job output back to Tivoli Workload
Scheduler through the TWS Agent plug-in on the Tivoli Dynamic Workload
Broker server.

It is important to note that Tivoli Workload Scheduler cannot directly specify
which Tivoli Dynamic Workload Broker managed computer will be used to run the
Tivoli Dynamic Workload Broker job. However, it is possible to create a Tivoli
Dynamic Workload Broker job definition that contains a job variable whose value
is a resource. In this situation you can specify the value for the Tivoli Dynamic
Workload Broker job variable in the Tivoli Workload Scheduler job definition Task
field. (See 4.3.1, “Job variables” on page 155.)

Tivoli Workload Scheduler is a job scheduling product and Tivoli Dynamic
Workload Broker is a workload management product. Tivoli Workload Scheduler
and Tivoli Dynamic Workload Broker work together to provide scheduled jobs in
a workload managed environment.

Note: The Tivoli Dynamic Workload Broker job definition referenced in a Tivoli
Workload Scheduler job definition must reference a logical resource.

 Chapter 4. Working with Tivoli Dynamic Workload Broker 153

4.2.6 Job affinity

An affinity relationship is established between two or more jobs when you want
them to run on the same resource. This is useful for situations in which the
results of one job are needed for the next job.

Affinity between two or more jobs can be defined using:

� Tivoli Dynamic Workload Broker Web Console

� Tivoli Dynamic Workload Broker command-line interface (jobsubmit
command)

� Tivoli Workload Scheduler

Tivoli Dynamic Workload Broker Web Console
From the Tivoli Dynamic Workload Broker Web Console you select Submit
rather than Submit to get to the wizard that facilitates affine jobs. You then
specify the job name or the alias name for the affine job. The job definition that
you submit will attempt to run on the same machine as the affine job.

Submit is also used for specifying a job alias, values for job variables, and a
target resource.

Tivoli Dynamic Workload Broker jobsubmit command
The jobsubmit script requires a job ID or an alias name for the affine job. For this
reason it is a good idea to always specify an alias name for an affine job, as that
is usually easier to remember than the job ID. The job definition that you submit
will attempt to run on the same machine as the affine job.

Tivoli Workload Scheduler
To define Tivoli Dynamic Workload Broker affinity between two or more jobs,
specify the affinity relationship in the Task String section using either the Tivoli
Dynamic Workload Broker job ID or the job alias:

“<jobName> -affinity jobid=<jobid>”
“<jobName> -affinity alias=<alias>”

To define the Tivoli Workload Scheduler affinity between tow or more jobs in the
same job stream, specify the affinity relationship in the Task String section:

“<jobName> -twsAffinity jobname=<twsJobName>”

Note: If a job definition specifies a candidateHost that is different from the
computer used for the affine job, then the job will fail with Resource allocation
failed.

154 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

This affinity definition overrides the affinity with the job ID and the affinity with the
job alias.

4.3 Using variables in job definitions

There are two types of variables in a job definition:

� Job variables (defined by the variables JSDL element)
� Environment variables (defined by the environment JSDL element)

Use of variables adds flexibility to the job definitions.

4.3.1 Job variables

A job definition can be created with job variables that will be assigned values
from the job submission. In this way you can have one job definition that is used
for several different situations by specifying the desired value for a job variable.

There are three types of job variables in Tivoli Dynamic Workload Broker:

� String (string of characters)
� Double (decimal value)
� Integer (integer value, no decimal point)

Note: Job variables are used in the JSDL statements of a job definition and
not in the script that is to be run.

 Chapter 4. Working with Tivoli Dynamic Workload Broker 155

Job variables are defined in a job definition as the JSDL variables element. Job
variables can be defined in the Tivoli Dynamic Workload Broker JBDC, as shown
in Figure 4-6.

Figure 4-6 Tivoli Dynamic Workload Broker JBDC GUI for creating job variable resource1

This job variable resource1 has the value of one of the computers managed by
Tivoli Dynamic Workload Broker - linwood.

156 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

The Resources element in the job definition is created using the variable
resource1, as in Figure 4-7.

Figure 4-7 Resources element will reference the resource1 job variable

Job variables are referenced in the XML starting with ${ and ending with }. For
this example, Tivoli Dynamic Workload Broker assigns the resource linwood to
the job vartest1 unless the variable resource1 is assigned a different value during
job submission from the Tivoli Dynamic Workload Broker Web Console, from the
jobsubmit.sh script (Tivoli Dynamic Workload Broker CLI), or from the Tivoli
Workload Scheduler Task field for the related Tivoli Workload Scheduler job
definition. See Example 4-5.

Example 4-5 Job definition vartest1 with Tivoli Dynamic Workload Broker job variable
resource1

<?xml version="1.0" encoding="UTF-8"?>
<jsdl:jobDefinition
xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl"
xmlns:jsdle="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdle"
description="test job variables" name="vartest1">
 <jsdl:variables>

 Chapter 4. Working with Tivoli Dynamic Workload Broker 157

 <jsdl:stringVariable name="resource1">linwood</jsdl:stringVariable>
 </jsdl:variables>
 <jsdl:application name="executable">
 <jsdle:executable>
 <jsdle:script>#!/bin/ksh
echo "test vartest1"</jsdle:script>
 </jsdle:executable>
 </jsdl:application>
 <jsdl:resources>
 <jsdl:candidateHosts>
 <jsdl:hostName>${resource1}</jsdl:hostName>
 </jsdl:candidateHosts>
 </jsdl:resources>
</jsdl:jobDefinition>

Figure 4-8 shows the use of the Tivoli Dynamic Workload Broker Web Console to
change the value of variable resource1 as it exists in the job definition.

Figure 4-8 Tivoli Dynamic Workload Broker job variable resource1 will be set to name of
the computer poplar

158 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Figure 4-9 Tivoli Dynamic Workload Broker CLI jobsubmit.sh script sets the job variable
resource1 to the name of the computer ironwood

Figure 4-10 Tivoli Dynamic Workload Broker Web Console using Submit to change job
variable values for a job submission

Note: Job variables cannot be directly used in the script that is stored as part
of the job definition. See 4.3.3, “Indirect use of job variables in scripts” on
page 161 for a technique to indirectly reference job variables.

 Chapter 4. Working with Tivoli Dynamic Workload Broker 159

4.3.2 Environment variables

Environment variables are set in the run-time environment for the Tivoli Dynamic
Workload Broker job definition. Unlike job variables, environment variable values
cannot be set in the Tivoli Dynamic Workload Broker Web Console, Tivoli
Workload Scheduler Task field, or the Tivoli Dynamic Workload Broker CLI.

Environment variables can be used to change the run-time environment for the
job on the assigned resource. This provides flexibility in that you can write a job
definition with environment variables so that only those values need to change
when you change the resources for the job definition.

Environment variables are referenced as $varname, where varname is the name
of the environment variable. See Figure 4-11.

Figure 4-11 Tivoli Dynamic Workload Broker job definition vartest2 containing
environment variable envar1 with value ENV1 as seen from the JBDC

160 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Example 4-6 Job definition vartest2.jsdl file

<?xml version="1.0" encoding="UTF-8"?>
<jsdl:jobDefinition
xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl"
xmlns:jsdle="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdle"
description="testing environment variables" name="vartest2">
 <jsdl:application name="executable">
 <jsdle:executable>
 <jsdle:environment>
 <jsdle:variable name="envar1">ENV1</jsdle:variable>
 </jsdle:environment>
 <jsdle:script>#!/bin/ksh
echo "environmental variable value is $envar1"</jsdle:script>
 </jsdle:executable>
 </jsdl:application>
</jsdl:jobDefinition>

Example 4-7 Job output for job vartest2

environmental variable value is ENV1

4.3.3 Indirect use of job variables in scripts

There is a technique that you can use to reference job variable values in the
executable script. You cannot directly reference job variables in the executable
scripts because job variables are resolved only in the JSDL statements. Since
environment variables are defined in JSDL statements, you can create a job
definition in which an environment variable has the value of a job variable and the
executable script references the environment variable.

An environment variable can be the link between a job variable value and its use
in an executable script. This is an indirect use of job variables in the scripts.

In Example 4-8 the value of job variable jobvar is assigned to environmental
variable jevar. You can send job variable values to the scripts through
environment variables.

Example 4-8 Job variable jobvar referenced by a script through environment variable
jevar in job definition vartest3

<?xml version="1.0" encoding="UTF-8"?>
<jsdl:jobDefinition
xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl"

 Chapter 4. Working with Tivoli Dynamic Workload Broker 161

xmlns:jsdle="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdle"
description="test of job and environment variables" name="vartest3">
 <jsdl:variables>
 <jsdl:stringVariable
name="jobvar">JobVariable</jsdl:stringVariable>
 </jsdl:variables>
 <jsdl:application name="executable">
 <jsdle:executable>
 <jsdle:environment>
 <jsdle:variable name="jevar">${jobvar}</jsdle:variable>
 </jsdle:environment>
 <jsdle:script>#!/bin/ksh
echo "job variable is $jevar"</jsdle:script>
 </jsdle:executable>
 </jsdl:application>
</jsdl:jobDefinition>

Example 4-9 Job output for job vartest3

job variable is JobVariable

4.4 Planning and choreography

Tivoli Dynamic Workload Broker provides virtualization of resources (physical
computers) so that jobs can be assigned a resource that represents a function
rather than a particular physical computer. Little will be gained if the computers
cannot be grouped together or otherwise treated as functions. If a specific
computer will always be used by a specific job then Tivoli Dynamic Workload
Broker will not be making any decisions regarding the assignment of that
resource to that job.

It is a good idea to have the Tivoli Dynamic Workload Broker server installed on a
machine without a Tivoli Dynamic Workload Broker agent. This will minimize
contention for resources. For example, if a Tivoli Dynamic Workload Broker
server is defined as a Tivoli Dynamic Workload Broker agent then the Tivoli
Dynamic Workload Broker server could determine that a job should run on itself.
This will increase the utilization of the Tivoli Dynamic Workload Broker server,
which could then result in the Tivoli Dynamic Workload Broker server thrashing in
an ineffective manner.

The Job Brokering Definition Console and the Web Console could be installed on
workstations that are not part of the managed computers. While these
components could be installed on the Tivoli Dynamic Workload Broker, they

162 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

should be installed on a separate machine to minimize contention for resources
and clarify what are local job definitions (those developed using the Job
Brokering Definition Console and stored on that machine) and what are remote
job definitions (those stored on the Tivoli Dynamic Workload Broker server).

Figure 4-12 illustrates an installation involving Tivoli Dynamic Workload Broker
and Tivoli Workkload Scheduler.

Figure 4-12 Tivoli Dynamic Workload Broker and Tivoli Workload Scheduler connected
through the Tivoli Dynamic Workload Broker Tivoli Workload Scheduler Agent

4.4.1 Considerations for Tivoli Workload Scheduler integration

The key points in an integration with Tivoli Workload Scheduler are:

� The Tivoli Dynamic Workload Broker server is configured as a standard agent
in the Tivoli Workload Scheduler environment but does not have all of the
features of a standard agent. In particular, you can only run a Tivoli Workload
Scheduler job definition on this computer if the Task field references a Tivoli
Dynamic Workload Broker job definition. The computer is a bridge to the Tivoli
Dynamic Workload Broker server and not a computer for running other Tivoli
Workload Scheduler job definitions.

 Chapter 4. Working with Tivoli Dynamic Workload Broker 163

� Only jobs meant to run in the Tivoli Dynamic Workload Broker environment
are sent to the Tivoli Dynamic Workload Broker Tivoli Workload Scheduler
Agent (which is a plug-in on the Tivoli Dynamic Workload Broker server).

� The Tivoli Workload Scheduler job definition in the Task field references the
Tivoli Dynamic Workload Broker job definition.

It is best to draw a before and after picture of the workstation architecture and job
definitions. Planning and the order of job definition migration is critical to a
successful integration.

Existing Tivoli Workload Scheduler jobs
The basic idea for migrating existing Tivoli Workload Scheduler job definitions to
Tivoli Dynamic Workload Broker is to create a Tivoli Dynamic Workload Broker
job definition for each Tivoli Workload Scheduler job definition that is to run on a
computer managed by Tivoli Dynamic Workload Broker. Each existing Tivoli
Workload Scheduler job definition is then modified so that it references the new
Tivoli Dynamic Workload Broker job definition in the Task field.

You will need to create a new Tivoli Workload Scheduler job definition if the
existing one is still in use within the Tivoli Workload Scheduler environment. The
affected Tivoli Workload Scheduler job streams need to reference any new Tivoli
Workload Scheduler job definitions that are created.

The structure of the Tivoli Workload Scheduler job streams does not change.
Only the job definitions change, as described above. The predecessor and
successor relationships of your Tivoli Workload Scheduler job streams do not
change.

These are the product components and steps that you may follow:

1. Existing Tivoli Workload Scheduler job definitions and job streams are
extracted form the Tivoli Workload Scheduler database.

2. The Job Brokering Definition Console is used to create Tivoli Dynamic
Workload Broker job definitions from these Tivoli Workload Scheduler job
definitions and job streams.

3. The Job Brokering Definition Console is used to create Tivoli Workload
Scheduler job definitions that reference the newly created Tivoli Dynamic
Workload Broker job definitions.

4. The Job Brokering Definition Console is used to update Tivoli Workload
Scheduler job streams to reference the newly created Tivoli Workload
Scheduler job definitions.

5. The newly created Tivoli Dynamic Workload Broker job definitions are
uploaded to the Tivoli Dynamic Workload Broker server.

164 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

6. The newly created Tivoli Workload Scheduler job definitions and updated
Tivoli Workload Scheduler job streams are placed into the Tivoli Workload
Scheduler database.

Migrating a Tivoli Workload Scheduler fault-tolerant agent
The following is an outline of a strategy in which you may run new Tivoli Dynamic
Workload Broker job definitions on a computer that was once a Tivoli Workload
Scheduler Fault Tolerant Agent.

To move a computer that is a Tivoli Workload Scheduler Standard Agent from the
Tivoli Workload Scheduler environment to the Tivoli Dynamic Workload Broker
environment:

1. Remove the Tivoli Workload Scheduler workstation definition from the Tivoli
Workload Scheduler master domain manager.

2. Remove the Tivoli Workload Scheduler fault-tolerant agent components from
the computer to be managed by Tivoli Dynamic Workload Broker.

3. Install the Tivoli Dynamic Workload Broker Workload agent so that it becomes
a Tivoli Dynamic Workload Broker managed computer.

4. Create (or modify) a Tivoli Dynamic Workload Broker logical resource that will
reference the computer.

5. Migrate the affected Tivoli Workload Scheduler job streams and job
definitions.

Submitting Tivoli Workload Scheduler jobs
Once Tivoli Workload Scheduler and Tivoli Dynamic Workload Broker are
integrated, the creation of new job definitions to be run on Tivoli Dynamic
Workload Broker managed computers scheduled in Tivoli Workload Scheduler
can take place.

Essentially, a Tivoli Workload Scheduler job definition must be created that has a
Task field that references a Tivoli Dynamic Workload Broker job definition. The
workstation for the Tivoli Workload Scheduler job definition is the machine that
has the Tivoli Dynamic Workload Broker Tivoli Workload Scheduler agent
installed. This machine looks like a Tivoli Workload Scheduler standard agent to
the Tivoli Workload Scheduler master domain manager (or domain manager).
When the job definition arrives on this workstation the Tivoli Dynamic Workload
Broker server uses the value in the Task field as the name of a Tivoli Dynamic
Workload Broker job definition. It then retrieves the Tivoli Dynamic Workload
Broker job definition from the Tivoli Dynamic Workload Broker job repository,
assigns a resource, and runs the job. Job status is reported back to Tivoli
Workload Scheduler through the Tivoli Dynamic Workload Broker.

 Chapter 4. Working with Tivoli Dynamic Workload Broker 165

The following steps describe submitting a Tivoli Workload Scheduler job:

1. Create a job definition in Tivoli Dynamic Workload Broker (TDWBjob).

2. Create a job definition in Tivoli Workload Scheduler (TWSjob - the target
workstation of the Tivoli Workload Scheduler job definition is where the Tivoli
Dynamic Workload Broker Tivoli Workload Scheduler Agent lives). The Task
String section of the Tivoli Workload Scheduler job definition specifies the
name of the Tivoli Dynamic Workload Broker job definition (TDWBjob).

3. TWSjob is scheduled to run in Tivoli Workload Scheduler (from a job stream
or as an ad hoc job submission).

4. TWSjob arrives at the Tivoli Dynamic Workload Broker Tivoli Workload
Scheduler Agent workstation to run. (This looks like a Tivoli Workload
Scheduler Standard Agent to Tivoli Workload Scheduler.)

5. Tivoli Dynamic Workload Broker Tivoli Workload Scheduler Agent sees the
Tivoli Dynamic Workload Broker job definition TDWBjob specified in the Task
string.

6. Tivoli Dynamic Workload Broker Tivoli Workload Scheduler Agent tells Tivoli
Dynamic Workload Broker server to run the TDWBjob.

7. Tivoli Dynamic Workload Broker server retrieves the TDWBjob definition from
the job repository, assigns a resource, and runs the job.

8. The Tivoli Dynamic Workload Broker server communicates status to the Tivoli
Dynamic Workload Broker Tivoli Workload Scheduler Agent.

9. The job status can be monitored from the Tivoli Workload Scheduler.

Converting Tivoli Workload Scheduler jobs
After integration of Tivoli Workload Scheduler and Tivoli Dynamic Workload
Broker you may find a need to convert an existing Tivoli Workload Scheduler job
definition that runs on a Tivoli Workload Scheduler agent to a Tivoli Workload
Scheduler job definition that references a Tivoli Dynamic Workload Broker job
definition to run on a Tivoli Dynamic Workload Broker managed computer.

The following steps are the details for this conversion:

1. Export Tivoli Workload Scheduler job definitions and job streams to files using
the composer command.

2. Save the files on a workstation that has the Job Brokering Definition Console
installed.

3. Use the Job Brokering Dedfinition Console function Import From Tivoli
Workload Scheduler And Tivoli Dynamic Workload Broker and specify the
Tivoli Workload Scheduler job definition and job stream files for the import.

166 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

4. Contents of the Tivoli Workload Scheduler jobs are displayed in the Tivoli
Workload Scheduler Jobs table.

5. Associate the jobs to a logical resource using the Tivoli Dynamic Workload
Broker Logical Resources pane. (This tool adds the Tivoli Dynamic Workload
Broker Tivoli Workload Scheduler Agent name as a prefix to the job name.)

6. Use Export to Tivoli Workload Scheduler and Tivoli Dynamic Workload
Broker to create the new Tivoli Dynamic Workload Broker job definition.

a. Specify the name of the Tivoli Dynamic Workload Broker Tivoli Workload
Scheduler Agent (bridge).

b. Specify the file name for the exported job definitions.

c. Specify the file name for the exported job streams.

7. Edit the Job Submission Definition Language files that were saved on the
local workstation to add Tivoli Dynamic Workload Broker specific features (if
needed).

8. Save the Tivoli Workload Scheduler job definition and job stream files to the
Tivoli Workload Scheduler Server using the composer command.

9. Save the new Tivoli Dynamic Workload Broker job definition (files with the jsdl
extension) in the Tivoli Dynamic Workload Broker repository by uploading to
the Tivoli Dynamic Workload Broker server.

10.Schedule the updated job streams from the Tivoli Workload Scheduler.

11.Jobs will be submitted to the Tivoli Dynamic Workload Broker Tivoli Workload
Scheduler Agent where the Tivoli Dynamic Workload Broker server is also
running.

12.The Tivoli Dynamic Workload Broker server determines where the jobs run by
the resources required for each job (specified by the logical resource used in
creating the Tivoli Dynamic Workload Broker job definition).

4.5 Resource matching criteria

Tivoli Dynamic Workload Broker assigns resources to job definitions. A resource
is a computer (also known as a workstation) where the executable referenced in
the job definition runs. The job definition may also optionally specify criteria for
optimization that will affect the resource assigned to the job definition. This
criteria is used to match the job definition with the resource by Tivoli Dynamic
Workload Broker.

The Job Brokering Definition Console is a good place to start creating a job
definition that will specify resource matching criteria. The job definition file can be

 Chapter 4. Working with Tivoli Dynamic Workload Broker 167

edited later using the Tivoli Dynamic Workload Broker Web Console. Outside of
the Job Brokering Definition Console one needs to enter XML code directly into
the job definition.

4.5.1 Optimization objective type

The Optimization tab in the Job Brokering Definition Console can be used to
establish objectives for the optimization policy. Selection objective will create an
objective element in the job definition. The Tivoli Dynamic Workload Broker runs
the job on the resource matching the optimization requirement. This element is
mutually exclusive with the ewlm element.

The resource Type can be one of the following with an associated resource
property and optimization objective:

� Computer System
– CPU Utilization

• Maximize, Minimize
– Number of Processors

• Maximize, Maximize Utilization, Minimize, Minimize Utilization
– Processing Speed

• Maximize, Minimize
� File System

– Available
• Maximize, Minimize

– Total Storage Capacity
• Maximize, Maximize Utilization, Minimize, Minimize Utilization

� Logical Resource
– Quantity

• Maximize, Maximize Utilization, Minimize, Minimize Utilization
� Operating System

– Free Physical Memory
• Maximize, Minimize

– Free Swap Space
• Maximize, Minimize

– Free Virtual Memory
• Maximize, Minimize

– Total Physical Memory
• Maximize, Maximize Utilization, Minimize, Minimize Utilization

– Total Swap Space
• Maximize, Maximize Utilization, Minimize, Minimize Utilization

– Total Virtual Memory
• Maximize, Maximize Utilization, Minimize, Minimize Utilization

168 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

4.5.2 Optimization Enterprise Workload Manager type

Selection of this type creates an ewlm element in the job definition. This element
specifies the optimization based on Enterprise Workload Manager resource
weight calculation. The Tivoli Dynamic Workload Broker runs the job on the best
available resources as indicated by Enterprise Workload Manager. This element
is mutually exclusive with the objective element.

4.5.3 Resources

Resources can be specified in the Job Brokering Definition Console (using the
Resources tab) as:

� Hardware requirements
� Software requirements
� Advanced requirements

Hardware requirements
You can specify the following for the hardware requirements:

� Physical memory (exact or range of values)
� Virtual memory (exact or range of values)
� Candidate hosts
� Candidate CPU architecture (exact or range of speed values)

Software requirements
You can specify the following for the software requirements:

� Candidate operating system
� Logical resource quantity
� File systems (exact or range of disk space)

The logical resource quantity is an arbitrary value that you set so that the logical
resource is a consumable resource. The quantity is returned when the job
completes.

 Chapter 4. Working with Tivoli Dynamic Workload Broker 169

Advanced requirements
You can specify resource properties with AND and OR logic. The resource
properties are:

� CPU utilization
� Host name
� Manufacturer
� Model
� Number of processors
� Processing speed
� Processor type

Each of these resource properties is specified with an exact value or a range
value.

A relationship of Associates With or Contains can be specified for the resource
where the job is to be run. An allocation for the number of processors for the
resource can be specified. Resource groups to which the resource must belong
can be specified.

4.5.4 Related resources

A related resource is a resource identified by an ID that is referenced in a
resource element. Logical resources are typical related resources. See
Example 4-4 on page 146 for a job definition that uses a logical resource group
as a related resource.

The related resource type can be:

� Computer system
� File system
� Logical resource
� Network system
� Operating system

The resource properties can be one of the following with an exact or a range of
values:

� Display name
� Quantity
� Sub type

You can specify a relationship for Associates With or Contains.

An allocation quantity is an arbitrary value that you set so that the related
resource is a consumable resource. The quantity is returned when the job
completes.

170 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Resource groups to which the resource must belong can be specified.

4.6 Monitoring computers and jobs

Computers and jobs can be monitored from the Tivoli Dynamic Workload Broker
Web Console. The Tivoli Dynamic Workload Broker Web Console shows the
status of computers managed by Tivoli Dynamic Workload Broker. The network
service Agent Manager provides the Tivoli Dynamic Workload Broker server with
the information about the status of the computers managed by the Tivoli Dynamic
Workload Broker server.

Jobs can be monitored from the:

� Tivoli Workload Scheduler JSC (Job Submission Console) and CLI
� Tivoli Dynamic Workload Broker Web Console
� Tivoli Dynamic Workload Broker CLI

Tivoli Workload Scheduler Job Submission Console and CLI
The Tivoli Workload Scheduler Job Submission Console (JSC) provides
information about the status of the Tivoli Workload Scheduler job running on the
Tivoli Dynamic Workload Broker Tivoli Workload Scheduler Agent. The Tivoli
Dynamic Workload Broker job itself runs on a Tivoli Dynamic Workload Broker
managed computer. You can browse the job output in Tivoli Workload Scheduler
to see the name of the Tivoli Dynamic Workload Broker managed computer used
for the Tivoli Dynamic Workload Broker job that was referenced in the Tivoli
Workload Scheduler job definition. Tivoli Workload Scheduler also has a CLI to
monitor the Tivoli Workload Scheduler job and browse the job output.

Note: The status for Tivoli Dynamic Workload Broker jobs as seen the in Tivoli
Dynamic Workload Broker Web Console will be similar, but not identical, to the
status for the same jobs as seen using the Tivoli Dynamic Workload Broker
CLI.

 Chapter 4. Working with Tivoli Dynamic Workload Broker 171

Tivoli Dynamic Workload Broker Web Console
The Tivoli Dynamic Workload Broker Web Console shows the status of Tivoli
Dynamic Workload Broker jobs and Tivoli Dynamic Workload Broker managed
computers. It does not show the status of Tivoli Workload Scheduler jobs and
Tivoli Workload Scheduler workstations. See Figure 4-13.

Figure 4-13 Tivoli Dynamic Workload Broker Web Console showing status of the Tivoli
Dynamic Workload Broker managed computers

172 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Figure 4-14 Tivoli Dynamic Workload Broker Web Console showing status of the Tivoli
Dynamic Workload Broker jobs

Tivoli Dynamic Workload Broker CLI
The Tivoli Dynamic Workload Broker CLI jobdetails, jobgetexecutionlog, and
jobquery scripts can be used to monitor Tivoli Dynamic Workload Broker jobs, as
shown in Figure 4-15. You must run the Tivoli Dynamic Workload Broker CLI
scripts on the Tivoli Dynamic Workload Broker server machine.

Figure 4-15 Tivoli Dynamic Workload Broker CLI jobdetails -id showing status of a job

 Chapter 4. Working with Tivoli Dynamic Workload Broker 173

174 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Chapter 5. Advanced guide to Tivoli
Dynamic Workload Broker

Tivoli Dynamic Workload Broker is a key element in a comprehensive on demand
Tivoli Workload Automation family portfolio. In this chapter we discuss the
following topics:

� “Tivoli Workload Scheduler migration to Tivoli Dynamic Workload Broker” on
page 176

� “Job Submission Description Language reference” on page 192

� “Tivoli Dynamic Workload Broker user authorization and authentication” on
page 218

� “Command-line interface” on page 232

5

© Copyright IBM Corp. 2007. All rights reserved. 175

5.1 Tivoli Workload Scheduler migration to Tivoli
Dynamic Workload Broker

This section describes in detail how you can migrate a Tivoli Workload Scheduler
job that runs on a Tivoli Workload Scheduler workstation to a Tivoli Dynamic
Workload Broker job that runs on a computer managed by Tivoli Dynamic
Workload Broker.

After migration the Tivoli Workload Scheduler will be used to run a new Tivoli
Workload Scheduler job. The end result will be a Tivoli Dynamic Workload Broker
job running on a computer managed by Tivoli Dynamic Workload Broker.

The basic idea is that the command or script run by the Tivoli Workload
Scheduler job stream will run from a new Tivoli Dynamic Workload Broker job
definition. A new Tivoli Workload Scheduler job definition will reference the new
Tivoli Dynamic Workload Broker job definition. Tivoli Workload Scheduler runs
the Tivoli Workload Scheduler on the Tivoli Dynamic Workload Broker server,
which then assigns a resource to the Tivoli Dynamic Workload Broker job
definition.

The migration results in the addition of an intermediate step in which Tivoli
Workload Scheduler communicates with Tivoli Dynamic Workload Broker
through the Tivoli Dynamic Workload Broker Tivoli Workload Scheduler Agent.

176 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

5.1.1 Initial Tivoli Workload Scheduler job definition and job stream

We begin with a Tivoli Workload Scheduler job definition named TWSJOB that
runs the command dir, as shown in Figure 5-1 and Figure 5-2 on page 178.

Figure 5-1 TWSJOB job definition - General tab

 Chapter 5. Advanced guide to Tivoli Dynamic Workload Broker 177

Figure 5-2 TWSJOB job definition - Task tab

In Tivoli Workload Scheduler one can submit a job definition (which is
automatically put in a job stream), submit a job stream, or schedule a job stream
to run. For this discussion, the job stream containing job definition TWSJOB is
TWSJOBSTREAM. TWSJOB is the only job definition in job stream
TWSJOBSTREAM.

Tivoli Dynamic Workload Broker has a migration utility to migrate TWS job
definitions and their related job streams into Tivoli Workload Scheduler job
definitions and job streams that result in Tivoli Dynamic Workload Broker job
definitions running on a computer managed by Tivoli Dynamic Workload Broker.

178 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

For this discussion the job stream TWSJOBSTREAM containing job definition
TWSJOB runs on the Tivoli Workload Scheduler fault tolerant agent (FTA) known
as PINE. The name of the workstation is used by the migration utility to name the
new Tivoli Dynamic Workload Scheduler job definition.

5.1.2 Situation after migration to Tivoli Dynamic Workload Broker

The desired situation after migration to Tivoli Dynamic Workload Broker is to
have a Tivoli Dynamic Workload Broker job definition (called PINE_TWSJOB for
this discussion) that runs the command that TWSJOB was running (dir) on a
computer controlled by Tivoli Dynamic Workload Broker.

In this example scenario the Tivoli Dynamic Workload Broker server and the
Tivoli Dynamic Workload Broker Tivoli Workload Scheduler Agent run on the
ASH machine. This machine is initially not part of the Tivoli Workload Scheduler
environment.

Note: The Tivoli Dynamic Workload Broker migration utility for Tivoli Workload
Scheduler job definitions requires a related Tivoli Workload Scheduler job
stream. For this reason you may need to create a Tivoli Workload Scheduler
job stream to use in the migration of each Tivoli Workload Scheduler job
definition that does not have a job stream.

Some Tivoli Workload Scheduler job streams contain more than one job
definition. You may use the same job stream for each of these contained job
definitions in the Tivoli Dynamic Workload Broker migration tool. Job
definitions that will not be migrated will be left alone by the migration tool.

 Chapter 5. Advanced guide to Tivoli Dynamic Workload Broker 179

The ASH machine must be configured as a standard agent for the Tivoli
Workload Scheduler implementation. This is not a true standard agent in that
only Tivoli Workload Scheduler job definitions that reference in the Task field a
Tivoli Dynamic Workload Broker job definition run on ASH. See Figure 5-3.

Figure 5-3 All workstations with ASH as the bridge between Tivoli Workload Scheduler
and Tivoli Dynamic Workload Broker

After migration you will have this situation:

� ASH (the computer with the Tivoli Dynamic Workload Broker server) will be
configured as a Standard Agent in the Tivoli Workload Scheduler
environment.

� The Task field of the new Tivoli Workload Scheduler job definition
PINE_TWSJOB (created by the migration function) references a new Tivoli
Dynamic Workload Scheduler job definition PINE_TWSJOB (also created by
the migration function).

� The newly created Tivoli Dynamic Workload Broker job definition
PINE_TWSJOB runs the command dir.

180 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

� An updated Tivoli Workload Scheduler job definition TWSJOBSTREAM that
runs the newly created Tivoli Workload Scheduler job definition
PINE_TWSJOB.

� A logical resource (TWSLOGICALRESOURCE for this discussion, created by
you) referencing the Tivoli Dynamic Workload Broker managed computers for
PINE_TWSJOB.

When you submit TWSJOBSTREAM after migration:

� Tivoli Workload Scheduler will cause PINE_TWSJOB to run on the ASH
machine.

� Tivoli Dynamic Workload Broker Tivoli Workload Scheduler Agent on the ASH
machine will find the Tivoli Dynamic Workload Broker job definition
PINE_TWSJOB in the Task field of PINE_TWSJOB and pass that on to the
Tivoli Dynamic Workload Broker server.

� Tivoli Dynamic Workload Broker server will assign PINE_TWSJOB to a
computer in the logical resource TWSLOGICALRESOURCE.

� The command dir will run on one of the machines in
TWSLOGICALRESOURCE assigned by Tivoli Dynamic Workload Broker
server.

5.1.3 Create logical resources for the new job definitions

All Tivoli Workload Scheduler job definitions that reference (in the Task field)
Tivoli Dynamic Workload Broker job definitions will run on the Tivoli Dynamic
Workload Broker computer (ASH in this discussion). The Tivoli Dynamic
Workload Broker Tivoli Workload Scheduler Agent is the bridge that sends the
Tivoli Dynamic Workload Broker job definition name to the Tivoli Dynamic
Workload Broker server for assignment to a resource.

The Tivoli Dynamic Workload Broker job definition has an associated logical
resource that contains the desired computers for running the job.

Note: The name of the newly created Tivoli Workload Scheduler job definition
and the Tivoli Dynamic Workload Scheduler definition will be the same. The
name will be <workstation>_<job definition>, where workstation is the Tivoli
Workload Scheduler workstation where the Tivoli Workload Scheduler job
definition was running.

 Chapter 5. Advanced guide to Tivoli Dynamic Workload Broker 181

In this discussion the logical resource TWSLOGICALRESOURCE is created by
you and contains the desired computers for running PINE_TWSJOB, as shown in
Figure 5-4.

Figure 5-4 TWSLOGICALRESOURCE - a logical resource containing the three
computers poplar, linwood, and ironwood

In practice you may want to use several different computers for different Tivoli
Dynamic Workload Broker job definitions. This is done by creating one logical
resource for each collection of computers.

5.1.4 Extract Tivoli Workload Scheduler job definitions and job
streams

The job definitions and the associated job streams are extracted to files using the
Tivoli Workload Scheduler composer command. In this discussion the Tivoli

Note: You need a logical resource for each unique set of computers required
by the Tivoli Dynamic Workload Broker job definitions arriving from Tivoli
Workload Scheduler.

182 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Workload Scheduler job definitions are extracted to the file job.txt and the Tivoli
Workload Scheduler job streams are extracted to the file sched.txt:
create job.txt from job=TWSJOB
create sched.txt from jobstream=TWSJOBSTREAM

The files job.txt and sched.txt are then moved to a machine that is running the
Job Brokering Definition Console (JBDC). See Figure 5-5 and Figure 5-6.

Figure 5-5 job.txt file contents for TWSJOB job definition

Figure 5-6 sched.txt file contents for TWSJOBSTREAM job stream

 Chapter 5. Advanced guide to Tivoli Dynamic Workload Broker 183

5.1.5 Import Tivoli Workload Scheduler job definitions and job
streams to Tivoli Dynamic Workload Broker

Do the following to import Tivoli Workload Scheduler job definitions and job
streams to Tivoli Dynamic Workload Broker:

1. On the Job Brokering Definition Console select Window → Open
Perspective → Job Definition Transition, as seen in Figure 5-7.

Figure 5-7 Job Definition Transition takes you to the migration utility

184 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

2. On the Tivoli Workload Scheduler Jobs, click the icon for Import From Tivoli
Workload Scheduler and Tivoli Dynamic Workload Broker. See
Figure 5-8.

Figure 5-8 Icon for importing Tivoli Workload Scheduler job definitions and job streams

 Chapter 5. Advanced guide to Tivoli Dynamic Workload Broker 185

3. Specify the files containing the Tivoli Workload Scheduler job definitions
(job.txt for this discussion) and the Tivoli Workload Broker job stream
definitions (sched.txt for this discussion), as shown in Figure 5-9.

Figure 5-9 Specify job.txt and sched.txt files for the Tivoli Workload Scheduler job
definition and job stream

4. Click Finish. The Tivoli Workload Scheduler Jobs window should appear and
TWSJOB should be listed under Jobs.

186 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

5. You may need to select Window → Reset Perspective in order to see the
Tivoli Dynamic Workload Broker Logical Resources. See Figure 5-10.

Figure 5-10 Both TWS jobs and Tivoli Dynamic Workload Broker Logical Resources
should be displayed

6. Drag and drop the icon for TWSJOB onto the logical resource
TWSLOGICALRESOURCE.

 Chapter 5. Advanced guide to Tivoli Dynamic Workload Broker 187

7. Click the logical resource to expand it. You should see PINE_TWSJOB. This
is a local Tivoli Dynamic Workload Broker job definition that has been created
by the import function. It will be exported from the Job Broker Definition
Console machine to the Tivoli Dynamic Workload Broker server. See
Figure 5-11.

Figure 5-11 PINE_TWSJOB is the Tivoli Dynamic Workload Broker job definition created
by dragging and dropping TWSJOB onyo logical resource twslogicalresource

188 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

5.1.6 Export Tivoli Workload Scheduler job definitions and job
streams to Tivoli Dynamic Workload Broker

Do the following to export Export Tivoli Workload Scheduler job definitions and
job streams to the Tivoli Dynamic Workload Broker:

1. In the Tivoli Dynamic Workload Broker Computers window click the icon
Export job brokering definitions, Tivoli Dynamic Workload Broker
logical resources, and Tivoli Workload Scheduler job definitions, as
shown in Figure 5-12.

Figure 5-12 Icon for Export job brokering definitions, Tivoli Dynamic Workload Broker
logical resources, and Tivoli Workload Scheduler job definitions

 Chapter 5. Advanced guide to Tivoli Dynamic Workload Broker 189

2. In the Export to Tivoli Workload Scheduler and Tivoli Dynamic Workload
Broker window (Figure 5-13) specify:

– Default bridge: ASH
– Job export file name: /tmp/jobexp.txt
– Job stream export file name: /tmp/schedexp.txt

Figure 5-13 Specify bridge and file names for Tivoli Workload Scheduler

3. Click Finish to create the new files /tmp/jobexp.txt and /tmp/schedexp.txt.

190 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

4. Select Window → Open Perspective → Job Brokering Definition Editing.
In the Local Job Brokering Definitions window select PINE_TWSJOB.jsdl
and click the Upload icon. This will put the new Tivoli Dynamic Workload
Broker job definition into the Tivoli Dynamic Workload Broker server job
repository database. See Figure 5-14.

Figure 5-14 Upload new Tivoli Dynamic Workload Broker job definition PINE_TWSJOB
to the Tivoli Dynamic Workload Broker server

 Chapter 5. Advanced guide to Tivoli Dynamic Workload Broker 191

5. Copy the files /tmp/jobexp.txt and /tmp/schedexp.txt to the Tivoli Workload
Scheduler master domain manager. On the Tivoli Workload Scheduler master
domain manager use the composer command to add the new Tivoli Workload
Scheduler job definition and job stream to the Tivoli Workload Scheduler
database. See Figure 5-15.

Figure 5-15 jobexp.txt fie contents for the new Tivoli Workload Scheduler job definition
PINE_TWSJOB

Figure 5-16 schedexp.txt file contents for the updated Tivoli Workload Scheduler job
stream TWSJOBSTREAM

6. You can now schedule or submit the updated Tivoli Workload Scheduler job
stream TWSJOBSTREAM or the new Tivoli Workload Scheduler job definition
PINE_TWSJOB in Tivoli Workload Scheduler. The result will be Tivoli
Dynamic Workload Broker running the Tivoli Dynamic Workload Broker job
definition PINE_TWSJOB on a computer in the logical resource
TWSLOGICALRESOURCE.

5.2 Job Submission Description Language reference

The Job Submission Description Language (JSDL) is a language for describing
the job requirements for submission to resources. The JSDL language contains a

192 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

vocabulary and normative XML schema that facilitate the expression of those
requirements as a set of XML elements.

To create and edit JSDL files, you can use the Job Brokering Definition Console.
The JSDL files are saved in the Job Repository as job definitions and become
available for submission. JSDL files adhere to the XML syntax and semantics as
defined in the JSDL schema. The JSDL file is arranged in a hierarchical structure
where the jobDefinition element is the root element. The jobDefinition element
contains all the elements that describe the job, the resource requirements, and
preferences attributes and scheduling directives.

The pseudo schema definition looks like Example 5-1.

Example 5-1 Pseudo schema definition

< jobDefinition >
<annotation ... />?
<category>... />*
<variables ... />?
<application ... />
<resources ... />?
<relatedResources ... />*
<optimization ... >?
<scheduling ...>?

</jobDefinition>

5.2.1 Category element

This element is used to categorize the job. One job may have multiple categories,
for example, IT_Employees, DB_Job, SalarySystem, and Batch. Currently this
element is useful only in the case of the Enterprise Workload Manager
integration. See the JSDL snippet in Example 5-2.

Example 5-2 Category element

<jsdl:category>IT_Employees</jsdl:category>
 <jsdl:category>DB_Job</jsdl:category>
 <jsdl:category>SalarySystem</jsdl:category>
 <jsdl:category>Batch</jsdl:category>

 Chapter 5. Advanced guide to Tivoli Dynamic Workload Broker 193

5.2.2 Variable element

The variable element has only one set of variables. It is used to define the default
values of some or all variables used in the JSDL. See Example 5-3.

Example 5-3 Variable element

<jsdl:variables>
 <jsdl:stringVariable description="Address where to send salaries"
name="IT_mail_address">5th Avenue - Austin</jsdl:stringVariable>
 <jsdl:uintVariable description="Number of working days for the
current week" name="Number_of_working_days">5</jsdl:uintVariable>
 <jsdl:uintVariable description="this is the number of the client
connections used through the the db client"
name="Salary_db_client">10</jsdl:uintVariable>
 </jsdl:variables>
Used in …
 <jsdle:arguments>
 <jsdle:value>${IT_mail_address}</jsdle:value>
 <jsdle:value>${Number_of_working_days}</jsdle:value>
 </jsdle:arguments>
And…
 <jsdl:logicalResource name="Salary" quantity="${Salary_db_client}"
subType="DBClientConnection"/>

There are three types of variables: string, double, integer. Variable values can be
overridden at submit time with variable values passed from the Web UI or CLI.
Only XXXXVariableExpressionType elements or attributes can reference
variables using ${var_name}, where var_name may or may not be defined in the
variables element. See Example 5-4.

Example 5-4 Referencing variables

<xsd:simpleType name="UnsignedIntVariableExpressionType">
<xsd:union>
<xsd:simpleType>
<xsd:restriction base='xsd:unsignedInt' />
</xsd:simpleType>
<xsd:simpleType>
<xsd:restriction base='xsd:string'>
<xsd:pattern value="[\n\r\t]*($\{[a-zA-Z_]+[0-9a-zA-Z_\.\-]*\})[\n\r\t
]*" />
</xsd:restriction>
</xsd:simpleType>
</xsd:union>
</xsd:simpleType>

194 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

<xsd:complexType name="LogicalResourceRequirementType">
<xsd:attribute name="quantity"
type="jsdl:UnsignedIntVariableExpressionType" use="optional" />
<xsd:attribute name="name"
type="jsdl:StringVariableExpressionType" use="optional" />
<xsd:attribute name="subType"
type="jsdl:StringVariableExpressionType" use="optional" />

</xsd:complexType>

5.2.3 Application element

This is a mandatory element. It defines the type of the job and includes what has
to be executed and the actual parameters to be used. The type is specified in the
name attribute and only two values are allowed for now:

� “executable”
� “j2ee”

Example 5-5 is an example JSDL snippet.

Example 5-5 Application element

<jsdl:application name="executable">
<jsdl:application name="j2ee">

Depending on the type specified two different elements may be specified.

5.2.4 Execution element

Executable element allows the specifications for native jobs (that is, executables
and scripts). Scripts may be embedded in this element. See Example 5-6.

Example 5-6 Execution element

<xsd:complexType name="ExecutableType">
<xsd:sequence>
<xsd:element name="arguments" type="jsdle:ArgumentsType" minOccurs="0"
maxOccurs="1" />
<xsd:element name="environment" type="jsdle:EnvironmentType"
minOccurs="0" maxOccurs="1" />
<xsd:element name="script" type="xsd:string" minOccurs="0"
maxOccurs="1" />
<xsd:element name="credential" type="jsdle:CredentialType"
minOccurs="0" maxOccurs="1" />

 Chapter 5. Advanced guide to Tivoli Dynamic Workload Broker 195

</xsd:sequence>
<xsd:attribute name="path" type="jsdl:StringVariableExpressionType"
use="optional" />
<xsd:attribute name="error" type="jsdl:StringVariableExpressionType"
use="optional" />
<xsd:attribute name="input" type="jsdl:StringVariableExpressionType"
use="optional" />
<xsd:attribute name="output" type="jsdl:StringVariableExpressionType"
use="optional" />
<xsd:attribute name="workingDirectory"
type="jsdl:StringVariableExpressionType" use="optional" />
</xsd:complexType>
JSDL snippet for executable specification:
 <jsdl:application name="executable">
 <jsdle:executable error="salary.err" input="salary.in"
output="salary.out" path="calculate_salary.sh"
workingDirectory="/home/salaryuser/">
 <jsdle:arguments>
 <jsdle:value>${IT_mail_address}</jsdle:value>
 <jsdle:value>${Number_of_working_days}</jsdle:value>
 </jsdle:arguments>
 <jsdle:credential>
 <jsdle:userName>salaryuser</jsdle:userName>
 </jsdle:credential>
 </jsdle:executable>
 </jsdl:application>

Execution element - embedded scripts
Example 5-7 is an example of JSDL snippets for embedded script specification.

Example 5-7 JSDL snippets for embedded script specification

Windows
<jsdle:executable output="outwin.log" workingDirectory="${wd}">
 <jsdle:arguments>
 <jsdle:value>${string}</jsdle:value>
 <jsdle:value>${filename}</jsdle:value>
 </jsdle:arguments>
 <jsdle:script>FIND "%1" "%2"</jsdle:script>
</jsdle:executable>
Unix/Linux
 <jsdle:executable error="script.err" output="script.out"
workingDirectory="/tmp/TDWB">
 <jsdle:arguments>

196 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

 <jsdle:value>${start}</jsdle:value>
 <jsdle:value>${end}</jsdle:value>
 <jsdle:value>${filename}</jsdle:value>
 </jsdle:arguments>
 <jsdle:script>#!/bin/sh
 if [$# -eq 3]; then
if [-e $3]; then
 tail +$1 $3 | head -n$2
 else
 echo "$0: Error opening file $3"
 exit 2
fi
 else
 echo "Missing arguments!"
 fi</jsdle:script>
</jsdle:executable>

5.2.5 J2EE element

The J2EE element allows the specifications for J2EE jobs, for example, Java
Message Services (JMS) messages and Enterprise Java Beans (EJB) calls. It
may contain three elements:

� “invoker”: This can be direct or indirect.

– Indirect means that the EJB call or JMS message is executed through the
WAS scheduler. After the scheduler call the agent sends the EXECUTING
status to the server and then starts polling the scheduler for updating the
job status to successfully or unsuccessfully completed.

– Direct means that the Tivoli Dynamic Workload Broker agent directly calls
the EJB process method or directly sends the JMS message. The agent
job’s thread remains blocked until the operation completes. The
EXECUTING status is not sent to the server.

� “jms” or “ejb”: These elements are mutually exclusive.

– JMSelement allows the specification of the target JMS queue and the
message to be sent.

– The EJB element allows the specification of the JNDI home of the EJB to
be called.

� Credential: This element contains the credentials to be used when invoking
the EJB or sending the JMS message.

 Chapter 5. Advanced guide to Tivoli Dynamic Workload Broker 197

J2EE example for a Direct EJB job
See the JSDL schema snippet example in Example 5-8.

Example 5-8 JSDL schema snippet for direct EJB job

<xsd:complexType name="J2EEType">
<xsd:sequence>

<xsd:element maxOccurs="1" minOccurs="1" name="invoker"
type="jsdlj:InvokerType"/>
<xsd:choice maxOccurs="1" minOccurs="1">
<xsd:element maxOccurs="1" minOccurs="0" name="jms"
type="jsdlj:JMSActionType"/>
<xsd:element maxOccurs="1" minOccurs="0" name="ejb"
type="jsdlj:EJBActionType"/>
</xsd:choice>
<xsd:element maxOccurs="1" minOccurs="0" name="credential"
type="jsdlj:CredentialType"/>
</xsd:sequence>
</xsd:complexType>

Example 5-9 shows a JSDL XML snippet for a Direct EJB job.

Example 5-9 JSDL XML snippet for direct EJB job

<jsdl:application name="j2ee">
 <jsdlj:j2ee>
 <jsdlj:invoker type="Direct"/>
 <jsdlj:ejb>

<jsdlj:jndiHome>ejb/test/scheduler/MyTest100BeanHome</jsdlj:jndiHome
>
 </jsdlj:ejb>
 </jsdlj:j2ee>
 </jsdl:application>

This job causes the Tivoli Dynamic Workload Broker agent to directly call the
EJB ejb/test/scheduler/MyTest100Bean process method. The EJB must be
already installed in the target WAS and must implement the TaskHandler
interface.

198 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

J2EE example for an Indirect EJB job
Example 5-10 shows a JSDL XML snippet for an Indirect EJB job.

Example 5-10 J2EE example - indirect EJB job

<jsdl:application name="j2ee">
 <jsdlj:j2ee>
 <jsdlj:invoker type="Indirect"/>
 <jsdlj:ejb>

<jsdlj:jndiHome>ejb/test/scheduler/MyTest100BeanHome</jsdlj:jndiHome
>
 </jsdlj:ejb>
 </jsdlj:j2ee>
 </jsdl:application>

This job causes the Tivoli Dynamic Workload Broker agent to indirectly call the
EJB ejb/test/scheduler/MyTest100Bean process method through the WebSphere
Application Server Scheduler. The EJB must be already installed in the target
WebSphere Application Server and must implement the TaskHandler interface.
The WebSphere Application Server scheduler must be already configured in the
target WAS and its address defined in the configuration property file of the agent.

J2EE example for a Direct JMS job
Example 5-11 shows a JSDL XML snippet for a Direct EJB job.

Example 5-11 JSDL XML snippet for a direct EJB job

<jsdl:application name="j2ee">
 <jsdlj:j2ee>
 <jsdlj:invoker type="Direct"/>
 <jsdlj:jms>
 <jsdlj:connFactory>jms/MyCF</jsdlj:connFactory>
 <jsdlj:destination>jms/MyQueue</jsdlj:destination>
 <jsdlj:message>Hello Paolo</jsdlj:message>
 </jsdlj:jms>
 </jsdlj:j2ee>
 </jsdl:application>

This job causes the Tivoli Dynamic Workload Broker agent to directly send the
message Hello Paolo to jms/MyQueue address.

 Chapter 5. Advanced guide to Tivoli Dynamic Workload Broker 199

J2EE example for an indirect JMS job
Example 5-12 shows a JSDL XML snippet for an indirect JMS job.

Example 5-12 JSDL XML snippet for an indirect JMS job

<jsdl:application name="j2ee">
 <jsdlj:j2ee>
 <jsdlj:invoker type="Indirect"/>
 <jsdlj:jms>
 <jsdlj:connFactory>jms/MyCF</jsdlj:connFactory>
 <jsdlj:destination>jms/MyQueue</jsdlj:destination>
 <jsdlj:message>Hello Paolo</jsdlj:message>
 </jsdlj:jms>
 </jsdlj:j2ee>
 </jsdl:application>

This job causes the Tivoli Dynamic Workload Broker agent to indirectly send the
message “Hello Paolo” to jms/MyQueue address. The WebSphere Application
Server scheduler must already be configured in the target WebSphere
Application Server and its address defined in the configuration property file of the
agent.

5.2.6 Resource element

Resource element IDs are used for specifications for resource requirements that
must be matched on target computer systems in order for a job to be dispatched
to that system.

All resource requirements below must be matched when using the AND
statement. Some of the requirements are themselves a list of requirements that
may be considered when using the OR statement (that is, at least one of them
must be matched). A resource may contain the following elements:

� candidateHosts: This is a list of possible host names to be matched.

� candidateCPUs: This is a list of possible CPU characteristics to be matched.

� physicalMemory: The range of free physical memory to be matched.

� virtualMemory: The range of free virtual memory to be matched.

� candidateOperatingSystems: This is a list of possible OS characteristics to be
matched.

� fileSystem: This is the exact list of file system characteristics to be matched.

� logicalResource. This is the exact list of logical resource characteristics to be
matched.

200 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

� Group: This is the exact list of groups to which the target computer must be
associated.

� Properties: This is the AND/OR combination of computer system attribute
range values that must be matched on target.

� Allocation: This is the list of computer system attribute exact values that must
logically reserved for this job.

� Relationship: This is the list of relationships with resources defined in the
relatedResources element.

Resource element - CandidateHosts
This is an optional element. It allows the specification of a list of possible host
names. The hosts specified are in OR. At least one of them must be matched by
the operating system resource contained in the target computer system
resource.

Each hostName element can be a reference to a variable (that is, ${my_host}).
The hostName element supports wildcards.

Example 5-13 shows an example.

Example 5-13 Resource element - CandidateHosts

<xsd:complexType name="CandidateHostsRequirementType">
<xsd:complexContent>
<xsd:sequence>
<xsd:element name="hostName"
type="jsdl:StringVariableExpressionType" minOccurs="1"
maxOccurs="unbounded" />
</xsd:sequence>
</xsd:complexContent>
</xsd:complexType>

This is an optional element. It allows the specification of a list of possible CPU
characteristic combinations. The characteristic combinations specified are in OR.
At least one of them must be matched by the target computer system resource.

� The “architecture” attribute can have one of the following values: “powerpc”,
“powerpc_64”, “x86”, “x86_64”, “s390”, or “s390x”.

� The “quantity” attribute indicates the number of processors required.

Note: Only resouce groups containing computers can be used. Logical
resource groups containing logical resources can only defined as a related
resource.

 Chapter 5. Advanced guide to Tivoli Dynamic Workload Broker 201

� The “speed” element indicates the CPU speed range in MHz required.

Example 5-14 shows a JSDL schema snippet for resource element -
CandidateCPUs.

Example 5-14 JSDL schema snippet

<xsd:complexType name="CandidateCPUsRequirementType">
<xsd:complexContent>
<xsd:sequence>
<xsd:element name="cpu"
type="jsdl:CPURequirementType" minOccurs="1"
maxOccurs="unbounded" />
</xsd:sequence>
</xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="CPURequirementType">
<xsd:complexContent>
<xsd:sequence>
<xsd:element name="speed"
type="jsdl:NumericRangeType" minOccurs="0" maxOccurs="1" />
</xsd:sequence>
<xsd:attribute name="architecture"
type="jsdl:ProcessorArchitectureEnumeration"
use="optional" />
<xsd:attribute name="quantity" type="xsd:unsignedInt"
use="optional" />
</xsd:complexContent>
</xsd:complexType>

Example 5-15 shows a JSDL XML snippet for resource element -
CandidateCPUs.

Example 5-15 JSDL XML snippet for Resource element - CandidateCPUs

<jsdl:candidateCpus>
 <jsdl:cpu architecture="x86" quantity="2">
 <jsdl:speed>
 <jsdl:range>
 <jsdl:minimum>1000.0</jsdl:minimum>
 <jsdl:maximum>2000.0</jsdl:maximum>
 </jsdl:range>
 </jsdl:speed>
 </jsdl:cpu>
 <jsdl:cpu architecture="x86" quantity="1">

202 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

 <jsdl:speed>
 <jsdl:range>
 <jsdl:minimum>2000.0</jsdl:minimum>
 <jsdl:maximum>4000.0</jsdl:maximum>
 </jsdl:range>
 </jsdl:speed>
 </jsdl:cpu>
 </jsdl:candidateCpus>

Resource element - candidateOperationSystem
This is an optional element. It allows the specification of a list of possible
operating system characteristic combinations. The characteristic combinations
are matched in OR. At least one of them must be matched By The Operating
System Resource Contained In The Target Computer System Resource.

The “type” attribute can have one of the following values: “AIX”, “LINUX”,
“Windows 2000”, “Windows XP”, or “Windows 2003”. The “version” attribute
indicates the version in dotted notation majVer.minVer.updVer.

Example 5-16 is an example JSDL schema snippet for resource element -
candidateOperationSystem.

Example 5-16 JSDL schema snippet for resource element - candidateOperationSystem

<xsd:attribute name="version" type="xsd:string“ use="optional" />
<xsd:attribute name="type“ type="jsdl:OperatingSystemTypeEnumeration"
use="required" />
</xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="OperatingSystemsRequirementType">
<xsd:complexContent>
<xsd:sequence>
<xsd:element name="operatingSystem“
type="jsdl:OperatingSystemRequirementType" minOccurs="1“
maxOccurs="unbounded" />
</xsd:sequence>
</xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="OperatingSystemRequirementType">
<xsd:complexContent>

 Chapter 5. Advanced guide to Tivoli Dynamic Workload Broker 203

Example 5-17 is an example JSDL schema XML snippet for resource element -
candidateOperationSystem.

Example 5-17 JSDL schema XML snippet for resource element -
candidateOperationSystem

<jsdl:candidateOperatingSystems>
 <jsdl:operatingSystem type="LINUX" version="3.0"/>
 <jsdl:operatingSystem type="AIX" version="5.2"/>
 </jsdl:candidateOperatingSystems>

Resource element - fileSystem
This is an optional element. It allows the specification of a list of required file
system characteristic combinations. The characteristic combinations are
matched in AND. All must be matched by the file system resources contained in
the target computer system resource.

The “type” attribute can have one of the following values: "Unknown”, “No Root
Directory”, “Removable Disk”, “Local Disk”, “Remote Drive”, “CD-ROM”, or “RAM
Disk”.

The “mountPoint” attribute indicates the mount point, and it can be a reference to
a variable (that is, ${temp_fs}). The mountPoint attribute supports wildcards. See
Example 5-18.

Example 5-18 Resource element - fileSystem JSDL schema snippet

<xsd:complexType name="FileSystemRequirementType">
<xsd:complexContent>
<xsd:sequence>
<xsd:element name="diskSpace"
type="jsdl:NumericRangeType" minOccurs="0" maxOccurs="1" />
</xsd:sequence>
<xsd:attribute name="type“ type="jsdl:FileSystemTypeEnumeration"
use="optional“ default="Local Disk" />
<xsd:attribute name="mountPoint"
type="jsdl:StringVariableExpressionType" use="optional" />
</xsd:complexContent>
</xsd:complexType>

Both file systems must exist on the target computer.

204 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Example 5-19 is another example of a JSDL XML snippet for resource element -
candidateOperationSystem.

Example 5-19 JSDL schema snippet for resource element - candidateOperationSystem

<jsdl:fileSystem mountPoint="/home/salaryuser" type="No Root
Directory">
 <jsdl:diskSpace>
 <jsdl:range>
 <jsdl:minimum>100000.0</jsdl:minimum>
 </jsdl:range>
 </jsdl:diskSpace>
 </jsdl:fileSystem>
 <jsdl:fileSystem mountPoint="/temp" type="No Root Directory">
 <jsdl:diskSpace>
 <jsdl:range>
 <jsdl:minimum>1.0E7</jsdl:minimum>
 </jsdl:range>
 </jsdl:diskSpace>
 </jsdl:fileSystem>

Resource element - memory
This is an optional element. It allows the specification of a range of physical or
virtual free memory. If specified, the ranges must be matched by the operating
system resource contained in the target computer system resource.

Example 5-20 is an example JSDL schema snippet.

Example 5-20 Resource element - memory

<xsd:element name="physicalMemory"
type="jsdl:NumericRangeType" minOccurs="0" maxOccurs="1" />

<xsd:element name="virtualMemory"
type="jsdl:NumericRangeType" minOccurs="0" maxOccurs="1" />

JSDL XML snippet
<jsdl:virtualMemory>
 <jsdl:range>
 <jsdl:minimum>100000.0</jsdl:minimum>
 </jsdl:range>
</jsdl:virtualMemory>

Resource element - logical resource
This is an optional element. It allows the specification of a list of required logical
resource characteristic combinations. The characteristic combinations are

 Chapter 5. Advanced guide to Tivoli Dynamic Workload Broker 205

matched in AND. All must be matched by the logical resources “AssociatedWith”
the target computer system resource.

All attributes can be a reference to a variable (that is, ${MyAppl}). The name and
subType attributes support wildcards. If the “quantity” attribute is specified then
that value is also reserved in the allocation process. In other words, the quantity
does not only define a requirement but also a quantity to be reserved.

In order to be matched, the logical resources with those characteristics have to
exist in the Tivoli Dynamic Workload Broker resource repository. They must also
have the “AssociateWith” relationship with the target resource, matching all the
other requierements expressed in the resources element.

Example 5-21 is an example JSDL schema snippet.

Example 5-21 JSDL schema snippet for Resource element - logical resource

<xsd:element name="logicalResource“
type="jsdl:LogicalResourceRequirementType" minOccurs="0“
maxOccurs="unbounded" />
<xsd:complexType name="LogicalResourceRequirementType">
<xsd:attribute name="quantity"
type="jsdl:UnsignedIntVariableExpressionType" use="optional" />
<xsd:attribute name="name"
type="jsdl:StringVariableExpressionType" use="optional" />
<xsd:attribute name="subType"
type="jsdl:StringVariableExpressionType" use="optional" />
</xsd:complexType>

Example 5-22 is an example JSDL XML snippet.

Example 5-22 JSDL XML snippet for Resource element - logical resource

<jsdl:logicalResource name="Salary" quantity="${Salary_db_client}"
subType="DBClientConnection"/>

Resource element - group
This is an optional element. It allows the specification of a list of required groups.
The groups are matched in AND. The target computer system must be in all the
groups specified.

The name attribute can be a reference to a variable (that is, ${MyAppl}). The
name attribute supports wildcards. In order to be matched, the groups have to
exist in the Tivoli Dynamic Workload Broker resource repository, and they must
also contain only target computer systems, not logical resources.

206 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Example 5-23 is an example JSDL schema snippet.

Example 5-23 JSDL schema snippet for Resource element - group

<xsd:element name="group" type="jsdl:GroupRequirementType"
minOccurs="0" maxOccurs="unbounded" />

<xsd:complexType name="GroupRequirementType">
<xsd:complexContent>
<xsd:attribute name="name"
type="jsdl:StringVariableExpressionType" use="required" />
</xsd:complexContent>
</xsd:complexType>

Example 5-24 is an example JSDL XML snippet.

Example 5-24 JSDL XML snippet for Resource element - group

<jsdl:group name="DBServersGroup"/>
 <jsdl:group name="HumanResourceGroup"/>

Resource element - properties
This is an optional element. It allows the specification of a list of combined
AND/OR requirements on the attributes of the computer system.

Example 5-25 is an example JSDL schema snippet.

Example 5-25 JSDL schema snippet for Resource element - properties

<xsd:element name="properties“ type="jsdl:RequirementCompositorType"
minOccurs="0“ maxOccurs="1" />
<xsd:complexType name="RequirementCompositorType">

<xsd:group ref="jsdl:CompositorContent" />
</xsd:complexType>
<xsd:group name="CompositorContent">
<xsd:sequence>
<xsd:element name="and“ type="jsdl:RequirementCompositorType"
minOccurs="0“

maxOccurs="unbounded" />
<xsd:element name="or" type="jsdl:RequirementCompositorType“
minOccurs="0"

maxOccurs="unbounded" />
<xsd:element name="requirement"
type="jsdl:RequirementType"minOccurs="0"

maxOccurs="unbounded" />
</xsd:sequence>

 Chapter 5. Advanced guide to Tivoli Dynamic Workload Broker 207

</xsd:group>
<xsd:complexType name="RequirementType">
<xsd:complexContent>
<xsd:extension base="jsdl:StringRangeType">

<xsd:attribute name="propertyName" type="xsd:QName“ use="required"
/>
</xsd:extension>
</xsd:complexContent>

Example 5-26 is an example JSDL XML snippet.

Example 5-26 JSDL XML snippet for Resource element - properties

<jsdl:properties>
 <jsdl:or>
 <jsdl:requirement propertyName="CPUUtilization">
 <jsdl:range>
 <jsdl:maximum>20</jsdl:maximum>
 </jsdl:range>
 </jsdl:requirement>
 <jsdl:requirement propertyName="ProcessingSpeed">
 <jsdl:range>
 <jsdl:minimum>4000</jsdl:minimum>
 </jsdl:range>
 </jsdl:requirement>
 </jsdl:or>
 <jsdl:requirement propertyName="ProcessorType">
 <jsdl:exact>x86_64</jsdl:exact>
 </jsdl:requirement>
 </jsdl:properties>

Resource element - allocation
This is an optional element. It allows the specification of the logical reservation of
the specified quantity of consumable attributes of the computer system.

The element can be a reference to a variable (that is, ${MyQuantity}).

208 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Example 5-27 shows an example of a JSDL schema snippet.

Example 5-27 JSDL schema snippet for Resource element - allocation

<xsd:complexType name="AllocationRequirementType">
<xsd:simpleContent>
<xsd:extension base="jsdl:DoubleVariableExpressionType">

<xsd:attribute name="propertyName" type="xsd:QName"
use="required" />

</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>

Example 5-28 shows an example of a JSDL XML snippet.

Example 5-28 JSDL XML snippet for Resource element - allocation

<jsdl:allocation propertyName="NumOfProcessors">1.0</jsdl:allocation>

Resource element - relationship
This is an optional element. It allows the specification of the relationships with
resource requirements specified in the relatedResource elements.

Example 5-29 shows an example of a JSDL schema snippet.

Example 5-29 JSDL schema snippet for Resource element - relationship

<xsd:complexType name="RelationshipRequirementType">
<xsd:complexContent>
<xsd:extension base="jsdl:ExtensibleElementsType">
<xsd:attribute name="type" type="xsd:QName"
use="optional" />
<xsd:attribute name="source" type="xsd:IDREF"
use="optional" />
<xsd:attribute name="target" type="xsd:IDREF"
use="optional" />
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

 Chapter 5. Advanced guide to Tivoli Dynamic Workload Broker 209

Example 5-30 shows an example of a JSDL XML snippet.

Example 5-30 JSDL XML snippet for Resource element - relationship

<jsdl:relationship target="My_OS" type="Contains"/>
<jsdl:relationship target="MY_LG"/>
<jsdl:relationship target="MY_FS" type="Contains"/>
…
<jsdl:relatedResources id="My_OS" type="OperatingSystem">
…
<jsdl:relatedResources id="MY_FS" type="FileSystem">
…
<jsdl:relatedResources id="MY_LG" type="LogicalResource">

5.2.7 Related resources element

A related resources element allows the specifications of resource requirements
for resources that may have or not have a relationship with the target computer
system. They are operating system, file system, network system, and logical
resource.

All resource requirements below must be matched in AND.

This element could be used when:

� The user wants to specify more complex AND/OR requirements on OS, NS,
FS, or LR.

� The user wants to specify requirements on all OS, NS, FS, or LR attributes.

� The user wants to use a resource as Global with or without relationship.

It may contain the following elements:

� logicalResource: This is the exact list of logical resource characteristics to be
matched.

� Group: This is the exact list of groups to which the related resource type must
be associated.

� Properties: This is the AND/OR combination of related resource type
attribute range values that must be matched on target.

� Allocation: This is the list of related resource type attribute exact values that
must logically reserved for this job.

� Relationship: This is the list of relationships with resources defined in other
relatedResources elements.

210 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

It contains the following attributes:

� type: The type of the related resource. Allowed values are ComputerSystem,
OperatingSystem, FileSystem, NetworkSystem, and LogicalResource.

� id: This is a JSDL unique identifier used only within the JSDL to allow
relationShips to target any relatedResource.

Example 5-31 shows an example of a JSDL schema snippet.

Example 5-31 JSDL schema snippet for related resources element

<xsd:group name="generalRequirements">
<xsd:sequence>
<xsd:element name="properties“ type="jsdl:RequirementCompositorType"
minOccurs="0"
maxOccurs="1" />
<xsd:element name="group" type="jsdl:GroupRequirementType“
minOccurs="0" maxOccurs="unbounded" />
<xsd:element name="allocation“ type="jsdl:AllocationRequirementType"
minOccurs="0"
maxOccurs="unbounded" />
<xsd:element name="relationship“
type="jsdl:RelationshipRequirementType" minOccurs="0“
maxOccurs="unbounded" />
</xsd:sequence>
</xsd:group>
<xsd:complexType name="RelatedResourceType">
<xsd:complexContent>
<xsd:extension base="jsdl:ExtensibleElementsType">
<xsd:sequence>

<xsd:group ref="jsdl:generalRequirements" />
</xsd:sequence>
<xsd:attribute name="type" type="xsd:QName“ use="optional" />
<xsd:attribute name="id" type="xsd:ID" use="required" />
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

 Chapter 5. Advanced guide to Tivoli Dynamic Workload Broker 211

Example 5-32 shows an example of a JSDL XML snippet.

Example 5-32 JSDL XML snippet for related resources element

<jsdl:relatedResources id="MyLR" type="LogicalResource">
<jsdl:properties>
<jsdl:requirement propertyName="Subtype">

<jsdl:exact>Pippo</jsdl:exact>
</jsdl:requirement>
</jsdl:properties>
<jsdl:group name="MyCriticalLG" />
<jsdl:allocation propertyName="Quantity">1</jsdl:allocation>
</jsdl:relatedResources>

Resource element versus related resource element
Example 5-33 and Example 5-34 compare the resource element versus the
related resource element.

Example 5-33 JSDL XML snippets

<jsdl:resources >
<jsdl:candidateOperatingSystems>
<jsdl:operatingSystem type="Windows XP" version="5.1" />

</jsdl:candidateOperatingSystems>
</jsdl:resources >

This is equivalent to Example 5-34.

Example 5-34 JSDL XML snippets

<jsdl:resources >
<jsdl:relationship type="Contains" target=“MyOS" />

</jsdl:resources >
<jsdl:relatedResources id="MyOS" type=“OperatingSystem">
<jsdl:properties>

<jsdl:and>
<jsdl:requirement propertyName=“OperatingSystemVersion">

<jsdl:exact>5.1</jsdl:exact>
</jsdl:requirement>
<jsdl:requirement propertyName=“OperatingSystemType">

<jsdl:exact>Windows XP</jsdl:exact>
</jsdl:requirement>
</jsdl:and>
</jsdl:properties>
</jsdl:relatedResources>

212 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

5.2.8 Optimization element

The optimization element allows the specifications of the resource selection
policy. It may contain the following elements:

� EWLM: The EWLM provides the resource weights.

� objective: The TDWB calculates the resource preferences based on actual
resource conditions.

� Name: This allows the TDWB to know which policy has been specified.
Allowed values are:

– JPT_JSDLOptimizationPolicyType
– JPT_EWLMType

Example 5-35 shows an example of a JSDL schema snippet.

Example 5-35 Optimization element

<xsd:complexType name="OptimizationType">
<xsd:complexContent>

<xsd:extension base="jsdl:ExtensibleElementsType">
<xsd:choice minOccurs="1">
<xsd:element name="ewlm" type="jsdl:EWLMType" />
<xsd:element name="objective"
type="jsdl:PropertyObjectiveType" />
</xsd:choice>
<xsd:attribute name="name" type="xsd:NCName"
use="optional" default="JPT_JSDLOptimizationPolicyType" />
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Optimization element - objective
This element defines the resource preference criteria based on resource attribute
values. It contains the following attributes:

� propertyObjective: the operation to be applied on the resource attribute
specified in “resourcePropertyName”

– Minimize and maximize apply to all optimizable attributes and give more
preference to the resource with minimum or maximum attribute values.

– MinimizeUtilization and MaximizeUtilization apply only to consumable
attributes (that is, those that can be specified in the allocation”element.
Those operations give more preference to the resources that have the
consumable attribute less or more used (that is, allocated). These

 Chapter 5. Advanced guide to Tivoli Dynamic Workload Broker 213

operations are very useful to concentrate or distribute the load over a set
of resources.

� resourceType: the type of the resource that has the attribute
“resourcePropertyName”. Allowed values are ComputerSystem,
OperatingSystem, NetworkSystem, FileSystem, and LogicalResource.

� resourcePropertyName: the attribute to which the operation must be applied

– Depends on resource type.

– Only optimizable attributes can be specified (that is, integer, double, float,
and so on). JSDLEditor allows this filtering.

Example 5-36 shows an example of a JSDL schema snippet.

Example 5-36 Optimization element - objective

<xsd:complexType name="PropertyObjectiveType">
<xsd:attribute name="propertyObjective" default="minimize"
use="optional">
<xsd:simpleType>
<xsd:restriction base="xsd:NCName">
<xsd:enumeration value="minimize" />
<xsd:enumeration value="maximize" />
<xsd:enumeration value="minimizeUtilization" />
<xsd:enumeration value="maximizeUtilization" />
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
<xsd:attribute name="resourceType" type="xsd:QName"
use="required" />
<xsd:attribute name="resourcePropertyName" type="xsd:QName"
use="required" />
</xsd:complexType>

214 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Example 5-37 shows an example of a JSDL XML snippet.

Example 5-37 Optimization element - objective

<jsdl:optimization>
<jsdl:objective resourceType="ComputerSystem"
resourcePropertyName="CPUUtilization" />
</jsdl:optimization>
On consumable attributes:
<jsdl:optimization>
<jsdl:objective objective=“maximizeUtilization"
resourceType=“LogicalResource"
resourcePropertyName=“Quantity" />
</jsdl:optimization>

5.2.9 Scheduling element

The scheduling element allows the specifications of scheduling directives for the
scheduler system (for example, Tivoli Dynamic Workload Broker). It may contain
the following elements:

� Priority: the job priority

� Estimated duration: the expected job duration

� Maximum resource waiting time: the maximum time the TDWB has to wait
before determining that there are no resources matching the requirements

� Recovery actions: the list of actions (for now only TPM actions) to be
executed when no capable resources are found

Example 5-38 shows an example of a JSDL schema snippet.

Example 5-38 Scheduling element

<xsd:complexType name="SchedulingType">
<xsd:complexContent>
<xsd:extension base="jsdl:ExtensibleElementsType">
<xsd:sequence>
<xsd:element name="recoveryActions"
type="jsdl:RecoveryActionList" minOccurs="0" maxOccurs="1" />
<xsd:element name="maximumResourceWaitingTime"
type="xsd:duration" minOccurs="0" maxOccurs="1" />
<xsd:element name="estimatedDuration"
type="xsd:duration" minOccurs="0" maxOccurs="1" />
<xsd:element maxOccurs="1" minOccurs="0"
name="priority" type="jsdl:PriorityType" />

 Chapter 5. Advanced guide to Tivoli Dynamic Workload Broker 215

</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Example 5-38 on page 215 shows an example of a JSDL schema snippet.

Example 5-39 Scheduling element

<jsdl:scheduling>
<jsdl:recoveryActions>
</jsdl:recoveryActions>
<jsdl:maximumResourceWaitingTime>P0DT1M</jsdl:maximumResourceWaiting
Time> (One Minute: Very important job. If there are no resources it
will fail)
<jsdl:estimatedDuration>P1D</jsdl:estimatedDuration> (one day - long
running job)
<jsdl:priority>100</jsdl:priority> (high Priority)
</jsdl:scheduling>

Scheduling - recovery actions
This allows the specifications of recovery actions to be executed when no
capable resources are found (that is, maximum resource waiting time is expired).

The JSDL schema can be extended by other schemas. It defines the common
attributes and elements for any action. An unlimited number of actions can be
specified. The Tivoli Dynamic Workload Broker executes all actions sequentially
and under the condition that the action returns an exit code = 0.

The RecoveryActionList element is a set of unlimited RecoveryActions. Each
extensible RecoveryActionType is made of the following attributes:

� name: This name defines the type of the action. For now only the “tpmaction”
value is allowed and must match the name of the recovery action plugin
defined in the Resource Advisor configuration.

� additionalTimeOnCompletion: The time to wait after the action completes
before completing the sequence or invoking the next action.

� maximumExecutionTime: The maximum time to wait for an action to
complete. After its expiration the TDWB stops the action sequence.

216 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Example 5-40 shows an example of a JSDL schema snippet.

Example 5-40 Scheduling - recovery actions

<xsd:complexType name="RecoveryActionType">
<xsd:complexContent>
<xsd:extension base="jsdl:ExtensibleElementsType">
<xsd:attribute name="name" type="xsd:NCName" use="required" />
<xsd:attribute name="additionalTimeOnCompletion" type="xsd:duration"
use="optional" default="P0DT0S" />
<xsd:attribute name="maximumExecutionTime" type="xsd:duration"
use="optional" default="P0DT0S" />
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
<xsd:complexType name="RecoveryActionList">
<xsd:complexContent>
<xsd:extension base="jsdl:ExtensibleElementsType">
<xsd:sequence>
<xsd:element name="action"
type="jsdl:RecoveryActionType" minOccurs="1" maxOccurs="unbounded" />
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Scheduling - TPM Extension
This allows the specifications of Tivoli Provisioning Manager recovery actions.
The JSDL schema can be extended by other schemas. It defines the common
attributes and elements for any action. The TPMAction schema is an extension to
the JSDL schema. It defines the TPMActionType.

� Parameters: the arguments to be passed to the workflow
� Credential: the credential to be used when connecting to TPM
� Tpmaddress: the address of the TPM server
� workFlow: the name of the workflow

Note: The default credential and address are defined in
TPMConfig.properties. These can be overridden per job.

 Chapter 5. Advanced guide to Tivoli Dynamic Workload Broker 217

Example 5-41 shows an example of a JSDL schema snippet.

Example 5-41 TPMAction schema snippet

<xsd:complexType name="ParametersType">
<xsd:sequence>
<xsd:element name="parameter" minOccurs="1"
maxOccurs="unbounded">
<xsd:complexType>
<xsd:simpleContent>
<xsd:extension base="jsdl:StringVariableExpressionType">
<xsd:attribute name="name"
type="xsd:string" use="required"/>
</xsd:extension>
</xsd:simpleContent>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="TPMAddressType">
<xsd:attribute name="host" type="xsd:string" use="optional"/>
<xsd:attribute name="port" type="xsd:unsignedInt" use="optional"/>
</xsd:complexType>
<xsd:element name="tpmaction" type="jsdltpm:TPMActionType"/>
<xsd:complexType name="TPMActionType">
<xsd:sequence>
<xsd:element name="parameters" type="jsdltpm:ParametersType"
minOccurs="0" maxOccurs="1" />
<xsd:element name="credential" type="jsdl:CredentialType" minOccurs="0"
maxOccurs="1"/>
<xsd:element name="tpmaddress" type="jsdltpm:TPMAddressType"
minOccurs="0" maxOccurs="1"/>
</xsd:sequence>

<xsd:attribute name="workFlow"
type="jsdl:StringVariableExpressionType" use="required" />
</xsd:complexType>

5.3 Tivoli Dynamic Workload Broker user authorization
and authentication

Global security should be enabled to protect unauthorized users from accessing
and changing WebSphere Application Server configurations and Tivoli Dynamic

218 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Workload Broker Server definitions, configuration, and job and resource
repositories.

When global security is not enabled, any user can access the WebSphere
Application Server Administrative Console and connect to the Tivoli Dynamic
Workload Broker console using the Job Brokering Definition Console, command
line, or Tivoli Dynamic Workload Broker Web Console.

Once a user or group is mapped to a security role on the Tivoli Dynamic
Workload Broker server, that authority carries through for the user when
accessing the Tivoli Dynamic Workload Broker server via the Job Brokering
Definition Console, via the command-line interface, or via the Tivoli Dynamic
Workload Broker Web Console.

Enabling global security and mapping security roles to users or groups is done
via the WebSphere Application Server Administrative Console.

Access the WebSphere Application Server Administrative Console via a Web
browser:

http://tdwb_server:9060/ibm/console

The first time you log into the WebSphere Administrative Console no user ID is
required because security is not enabled.

When you have enabled global security, you must always provide a user name
and password for the connection to the Tivoli Dynamic Workload Broker server
for the following interfaces:

� Tivoli Job Brokering Definition Console

A valid user name and password must be supplied when defining a server
connection to the Tivoli Dynamic Workload Broker server.

� Tivoli Dynamic Workload Broker Web Console

This is also known as the Integrated Solutions Console. A valid user name
and password must be supplied when configuring a server connection to the
Tivoli Dynamic Workload Broker Server.

� Command-line interface

The user and password required to connect to the Tivoli Dynamic Workload
Broker can be set in the
TDWB_Server_Install_Directory/config/CLIConfig.properties file or when
issuing a command-line interface command. More information about
command-line interface commands can be found in 5.4, “Command-line
interface” on page 232.

 Chapter 5. Advanced guide to Tivoli Dynamic Workload Broker 219

http://tdwb_server:9060/ibm/console

� Tivoli Workload Scheduler agent

The user and password required to connect to the Tivoli Dynamic Workload
Broker can set in the
TDWB_Server_Install_Directory/config/TWSAgent.properties file.

5.3.1 Enabling global security

Perform the following steps to enable global security:

1. Access the WebSphere Application Server Administrative Console via a Web
browser (http://tdwb_server:9060/ibm/console), as shown in Figure 5-17.

Figure 5-17 WebSphere Application Server Administrative Console login screen

Note: The first time you log into the WebSphere Administrative Console no
user ID is required because security is not enabled.

220 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

http://tdwb_server:9060/ibm/console

2. From the WebSphere Application Server Administrative Console Screen click
the plus sign (+) next to Security on the list of Welcome tasks on the left side of
the screen, as shown in Figure 5-18.

Figure 5-18 WebSphere Application Server Administrative Console Welcome page

 Chapter 5. Advanced guide to Tivoli Dynamic Workload Broker 221

3. Click Global security, select Enable global security, and deselect Enforce
Java 2 security, as shown in Figure 5-19, and click Apply.

Figure 5-19 Enable global security

Important: If you do not deselect the Enforce Java 2 security option Tivoli
Dynamic Workload Broker will not work.

222 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

4. Configure the WebSphere Application Server Administrative Console user for
global security, as shown in Figure 5-20. The user must be a valid user for the
local operating system of the WebSphere Application Server. This will be the
user ID and password that will be required to access the WebSphere
Application Server Administrative Console and make future configuration
changes. Click Apply and Save.

Figure 5-20 Configuring the WebSphere Application Server Administrative Console user

5.3.2 Tivoli Dynamic Workload Broker security roles

When you have enabled global security on the WebSphere Application Server, all
of the users defined in the server user registry are authenticated users and are
given the administrator role. You should map security roles to users or groups of
users in order to better control your Tivoli Dynamic Workload Broker
environment.

The roles discussed in this section are available in the WebSphere Application
Server for the Tivoli Dynamic Workload Broker:

WSClient
This is a superset of all of the other roles. Use all authenticated or specify the
users or groups that you assigned for the other roles. We recommend that you
leave this as all authenticated so that other applications that might want to
connect via Web services calls can do so.

 Chapter 5. Advanced guide to Tivoli Dynamic Workload Broker 223

Administrator
Users or groups of users with this security role are considered Tivoli Dynamic
Workload Broker superusers and have full authorization (configurator, developer,
operator, and submitter). However, users or groups with this security role cannot
add or mofiy users for the Tivoli Dynamic Workload Broker Web Console.

Operator
Users or groups of users with this security role can:

� Define, edit, and delete logical resources.
� Define, edit, and delete resource groups.
� Modify server connections.
� View job definitions.
� Submit jobs.
� Track jobs and computers.

Users or groups of users with this security role cannot:

� Add or modify job definitions.
� Install new Tivoli Workload Broker Agents.
� Add or modify users for the Tivoli Dynamic Workload Broker Web Console.

Submitter
Users or groups of users with this security role can:

� Submit jobs using the command-line interface.

� Manage any jobs that were submitted by this user via the command-line
interface.

� Submit .jsdl files as Tivoli Dynamic Workload Broker jobs, but these jobs are
not added to the job repository.

Users or groups of users with this security role cannot connect to the Tivoli
Dynamic Workload Broker server with the Tivoli Job Brokering Definition Console
or Tivoli Dynamic Workload Broker Web Interface.

Important: Do not select the Everyone check box for this role. If you select
Everyone, Tivoli Workload Broker will not work.

224 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Configurator
Users or groups of users with this security role can:

� Install new Tivoli Workload Broker Agents.
� Define, edit, and delete logical resources.
� Define, edit, and delete resource groups.
� Track computers.
� Modify server connections.

Users or groups of users with this security role cannot:

� Add, modify, view, track, or delete job definitions.
� Add or modify users for the Tivoli Dynamic Workload Broker Web Console.

Developer
Users or groups of users with this security role can:

� Define, edit, and delete logical resources.
� Define, edit, and delete resource groups.
� Modify server connections.
� View job definitions.
� Submit jobs.
� Track jobs and computers.

Users or groups of users with this security role cannot:

� Add or modify job definitions.
� Install new Tivoli Workload Broker Agents.
� Add or modify users for the Tivoli Dynamic Workload Broker Web Console.

 Chapter 5. Advanced guide to Tivoli Dynamic Workload Broker 225

5.3.3 Mapping security roles to users or groups

Perform the following steps to map security roles to users or groups of users:

1. From the WebSphere Application Server Administrative Console Welcome
page, expand Applications on the Welcome Task List, click Enterprise
Applications, and select ITDWB, as shown on Figure 5-21. Then click Map
security roles to users/groups.

Figure 5-21 Selecting Tivoli Dynamic Workload Broker Application

226 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

2. Assign users or groups to each security role, as shown in Figure 5-22. All
Authenticated Users is specified for WSClient, so the mapping of the
ATHENS\Administrator group is ignored.

Figure 5-22 Tivoli Dynamic Workload Broker security roles

For a definition of each role see 5.3.2, “Tivoli Dynamic Workload Broker
security roles” on page 223.

5.3.4 Manage users for Tivoli Dynamic Workload Broker Web Console

The Tivoli Dynamic Workload Broker Web Console is hosted by the Integrated
Solutions Console. It enforces the authentication mechanism by default, has its
own authentication mechanism, and maintains its own credential vault. The
Integrated Solutions Console keeps all of the defined credentials in the
embedded Cloudscape database.

The Integrated Solutions Console (ISC) does not use any operating system
authentication, nor does it integrate with any external LDAP. Each user that wants
to access any application running within the Integrated Solutions Console (such

 Chapter 5. Advanced guide to Tivoli Dynamic Workload Broker 227

as the Tivoli Dynamic Workload Broker Web Console) is authenticated against
the Integrated Solutions Console credential vault.

The user that wants to use the Tivoli Dynamic Workload Broker Web Console to
access the Tivoli Dynamic Workload Broker server sees only one visible
authentication step — he must provide the user ID and password defined in the
Integrated Solutions Console.

The logon credentials are not the same on the Integrated Solutions Console and
on the operating system (or LDAP) that uses the WebSphere Application Server
(hosting the Tivoli Dynamic Workload Broker server). Both credential vaults are
not automatically synchronized in any way. Due to this, a mapping among the
logon definitions stored in the Integrated Solutions Console and authority that is
used by WebSphere Application Server (hosting the Tivoli Dynamic Workload
Broker server) must be done. The mapping is performed on the Integrated
Solutions Console side.

The Integrated Solutions Console for the Tivoli Dynamic Workload Broker is
preconfigured for assigning users to Tivoli Dynamic Workload Broker views.

5.3.5 Add users to Tivoli Dynamic Workload Broker Web Console
roles

To add users to Tivoli Dynamic Workload Broker Web Console roles:

1. Log into the Tivoli Dynamic Workload as iscadmin.

2. Click Console Settings → User and Group Management.

Note: Authorization for each user is determined by the user name and
password defined with the server connection, not by the user name and
password used when logging into the Tivoli Dynamic Workload Broker Web
Console.

228 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

3. Click Search to display available groups, as shown in Figure 5-23.

Figure 5-23 Searching for ISC groups

 Chapter 5. Advanced guide to Tivoli Dynamic Workload Broker 229

Figure 5-24 shows the ISC groups.

Figure 5-24 ISC groups

In our example we add a user for TDWBDeveloper.

230 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

4. Click ITDWBDevoper and click Add user, as shown on Figure 5-25.

Figure 5-25 Adding user for TDWBDeveloper

 Chapter 5. Advanced guide to Tivoli Dynamic Workload Broker 231

5. Fill in the information about the user, as shown on Figure 5-26. The user is
now mapped to the Developer view.

Figure 5-26 Adding a user to the TDWBDeveloper view

This concludes the addition of the user.

5.4 Command-line interface

The command-line interface allows authorized users to create, submit, and
manage jobs on the Tivoli Dynamic Workload Broker Server.

Note: The user name and password are not tied to any operating system
or LDAP user. This is just the user name and password required for logging
into the Tivoli Dynamic Workload Broker Web Console. Authorization for
each user is determined by the user name and password defined on the
Tivoli Dynamic Workload Broker on the server connection configuration.

232 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

For more information about user authentication and authorization for the
command-line interface see 5.3.1, “Enabling global security” on page 220.

Installation details
CLI functionalities are invoked using command-line scipts. Scripts are installed in
the directory ITDWB_Server_install_directory/bin during the server installation
process.

CLI command property file
During the Tivoli Dynamic Workload Broker server installation process the
installation module creates the
ITDWB_Server_Install_directory/config/CLIConfig.properties file.

The CLIConfig.propoerties file contains configuration information that is used
when typing commands. By default, arguments required when typing commands
are retrieved from this file unless explicitly specified in the command syntax.

Information stored in the
ITDWB_Server_Install_directory/config/CLIConfig.properties file is:

� ITDWBServerHost - specifies the IP address or host name of the Tivoli
Dynamic Workload Broker server

� ITDWBServerPort - specifies the number of the Tivoli Dynamic Workload
Broker server port

� Tivoli Dynamic Workload Broker server secureport

� use_secure_connection

� KeyStore file

� TrustStore file

� KeyStore password

� TrustStore password

� User ID to connect to ITDWB server webservices

� Password to connect to ITDWB server webservices

� CLI log level

� Database connect configuration

 Chapter 5. Advanced guide to Tivoli Dynamic Workload Broker 233

CLI functionalities
The CLI functionalities are:

� Manage job definitions → jobstore
� Job submission → jobsubmit
� Browse job output → jobgetexecutionlog
� Cancel job → jobcancel
� Getting single job details → jobdetails
� Query jobs → jobquery
� Archive database tables → movehistorydata

Environment configuration details
Before using the CLI function, the user must configure the environment. In order
to perform this operation the user must launch the tdwb_env.bat (.sh) script.

5.4.1 jobstore

Invoking the jobstore.bat (sh) script allows an authorized usersto perform the
following operations on job definitions:

� Save and update the job definition file in the JobRepository database.
� Delete job definitions.
� Print job definitions to standard output.
� Perform queries on job definitions.

The jobstore syntax is:

jobstore [? | [-usr <username> -pwd <password>]
 { [-create <jsdl_file>] |
 [-update <jsdl_file>] |

[-del <job_definition_name>] |
[-get <job_definition_name>] |
[-queryname <job_definition_name> -querytarget

<job_definition_target>
-querydesc <job_definition_descr> -queryuser <job_definition_user>] }

 [-configFile <configuration_file>]]

234 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

jobstore to save job definition file in the JobRepository
This command invokes the Tivoli Dynamic Workload Broker server Web services
and saves the job definition file in the JobRepository database. It creates a single
record in the jod_job_definition table, using as primary key value <jobdefition
name> attribute value in job definition file. See the following example:

jobstore –create BA-WIN-JOB2.jsdl

Example 5-42 Using jobstore to add new job definition to JobRepository

C:\DOCUME~1\ADMINI~1\JD_WOR~1>edit BA-WIN-JOB2.jsdl

C:\DOCUME~1\ADMINI~1\JD_WOR~1>jobstore -create BA-WIN-JOB2.jsdl
Call Job Dispatcher to save the job definition
Job Definition was successfully saved in Job Repository

C:\DOCUME~1\ADMINI~1\JD_WOR~1>jobstore -queryname BA-WIN-JOB2
Call Job Dispatcher to query job definition
Success returned from Job Dispatcher
There are 1 Job Definitions found for your request.
Details are as follows:

Job Definition Name: BA-WIN-JOB2
Job Definition Description: Business Windows job version 2
Job Definition Owner: Administrator
Job Definition CreationTime: Wed May 09 10:33:47 CDT 2007

Jobstore to update job definition
This command invokes the Tivoli Dynamic Workload Broker server Web Services
and updates the job definition previously saved in JobRepository database. See
Example 5-43.

jobstore.bat –update jsdl_ping_win.xml

Example 5-43 Using jobstore to update existing job definition

C:\DOCUME~1\ADMINI~1\JD_WOR~1>jobstore -update BA-WIN-JOB2.jsdl
Call Job Dispatcher to set the job definition
Job Definition is successfully set in Job Repository

 Chapter 5. Advanced guide to Tivoli Dynamic Workload Broker 235

jobstore to delete job definition
This command invokes the Tivoli Dynamic Workload Broker server Web
services, deleting the job definition in the JobRepository database. It invokes the
Tivoli Dynamic Workload Broker server Web services, retreiving the job definition
previously saved in JobRepository database. See Example 5-44.

jobstore –del BA-WIN-JOB2

Example 5-44 Using jobstore to delete an existing job definition

C:\DOCUME~1\ADMINI~1\JD_WOR~1>jobstore -del BA-WIN-JOB2
Call Job Dispatcher to delete the job definition
Job Definition BA-WIN-JOB2 was successfully deleted from Job Repository

jobstore to get job definition
This command invokes the Tivoli Dynamic Workload Broker server Web
services, geting the job definition in the JobRepository database. See
Example 5-45.

jobstore –get WeeklyReport

Example 5-45 jobstore -get command and output

C:\WINDOWS>jobstore -get WeeklyReport
Call Job Dispatcher to get job definition
Success returned from Job Dispatcher
<?xml version="1.0" encoding="UTF-8"?>
<jsdl:JobDefinitionType
xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl"
xmlns:jsdle="http://www.ibm.com/xmlns/prod/scheduling
/1.0/jsdle" name="WeeklyReport">
 <jsdl:application name="executable">
 <jsdle:executable path="C:\WINDOWS\system32\whoami.exe"/>
 </jsdl:application>
 <jsdl:resources>
 <jsdl:candidateHosts>
 <jsdl:hostName>Athenshjh</jsdl:hostName>
 </jsdl:candidateHosts>
 <jsdl:candidateOperatingSystems>
 <jsdl:operatingSystem type="LINUX" version="4.3.2"/>
 </jsdl:candidateOperatingSystems>
 </jsdl:resources>
 <jsdl:scheduling>

<jsdl:maximumResourceWaitingTime>P0Y0M0DT0H0M30S</jsdl:maximumResourceW
aitingTime>

236 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

 <jsdl:priority>0</jsdl:priority>
 </jsdl:scheduling>
</jsdl:JobDefinitionType>

Jobstore to perform query on job definitions
This command invokes the Tivoli Dynamic Workload Broker server Web Services
and performs a search on job definitions(jod_job_definitions table) based on job
definition name, and returns information about the job.

Example 5-46 is an example:

jobstore –queryname BA*

Example 5-46 jobstore -queryname command and output

C:\WINDOWS>jobstore -queryname BA*
Call Job Dispatcher to query job definition
Success returned from Job Dispatcher
There are 4 Job Definitions found for your request.
Details are as follows:

Job Definition Name: BA-A-DB2QUERY1
Job Definition Description: Business area A DB2 query job
Job Definition Owner: administrator
Job Definition CreationTime: Fri Apr 13 18:35:22 CDT 2007
Job Definition ModificationTime: Fri Apr 13 18:47:54 CDT 2007

Job Definition Name: BA-A-Linuxjob
Job Definition Description: Business area A Linux job
Job Definition Owner: administrator
Job Definition CreationTime: Fri Apr 13 18:57:19 CDT 2007
Job Definition ModificationTime: Fri Apr 13 18:57:19 CDT 2007

Job Definition Name: BA-B-DB2QUERY1
Job Definition Description: Business area B DB2 query job
Job Definition Owner: jim
Job Definition CreationTime: Fri Apr 13 18:43:21 CDT 2007
Job Definition ModificationTime: Thu Apr 26 20:22:21 CDT 2007

 Chapter 5. Advanced guide to Tivoli Dynamic Workload Broker 237

Job Definition Name: BA-C-Windows-job
Job Definition Description: Business area C Windows job
Job Definition Owner: administrator
Job Definition CreationTime: Fri Apr 13 19:01:06 CDT 2007
Job Definition ModificationTime: Fri Apr 13 19:01:06 CDT 2007

5.4.2 jobsubmit

This command submits jobs using the jobsubmit script. Invoking the
jobsubmit.bat (sh) script allows an authorized user to submit a job to the job
dispatcher.

The jobsubmit syntax is:

jobsubmit [? | [-usr <username> -pwd <password>]
 {-jsdl <jsdl_file> | -jdname <job_definition_name>}
 [-alias <job_alias>]

 [-var <variable=value>]...
 [-affinity {jobid=<job_id>|alias=<job_alias>}]
[-configFile <configuration_file>]]

Submitting .jsdl job definitions
For example:

jobsubmit –jsdl WinJob.jsdl

� This command invokes the Tivoli Dynamic Workload Broker server Web
services and submits a .jsdl job definition (not stored in the JobRepository
database) to the server.

� A unique ID is assigned to the job.

� Job status and details are saved in job_jobs table.

� The job is now ready to be processed by Tivoli Dynamic Workload Broker
server.

� The job definition is not added to the JobRepository.

Example 5-47 jobstore command for submitted job not stored in JobRepository

C:\DOCUME~1\ADMINI~1\JD_WOR~1>jobsubmit -jsdl WinJob.jsdl
Call Job Dispatcher to submit the job.
Success returned from Job Dispatcher
The job f3f6facc-d0e5-3e8e-a1c1-32baed7d3472 submitted successfully

C:\DOCUME~1\ADMINI~1\JD_WOR~1>

238 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Submitting jobs stored in the JobRepository
The command invokes the Tivoli Dynamic Workload Broker server Web services
and submits a job using its job definition name previously saved in a database to
the server. For example:

jobsubmit.bat –jdname BA-C-Windows-job

Example 5-48 jobsubmit command

C:\DOCUME~1\ADMINI~1\JD_WOR~1>jobsubmit -jdname BA-C-Windows-job
Call Job Dispatcher to submit the job.
Success returned from Job Dispatcher
The job bde3b751-f11a-3c54-85f0-7fd73d55b6e9 submitted successfully

C:\DOCUME~1\ADMINI~1\JD_WOR~1>

5.4.3 jobgetexecutionlog

You can obtain job output for submitted jobs using the jobgetexecutionlog script.

Invoking the jobgetexecutionlog.bat (sh) script allows an authorized user to
obtain job output on a submitted job using the unique ID created at job
submission.

The jobgetexecutionlog syntax is:

jobgetexecutionlog [? | [-usr <username> -pwd <password>]
 {-id <job_id> -sizePage <Page Size> -offset <offset>}

[-configFile <configuration_file>]]

Using jobgetexecutionlog command
This command invokes the Tivoli Dynamic Workload Broker server Web
services, retrieving job output for jobs submitted to the server. For example:

jobgetexecutionlog –id 2296ad5e-beb7-342c-ae27-1238a83fe0b8 -sizePage
400 -offset 1

Example 5-49 Retrieving job output with jobgetexecutionlog command

C:\DOCUME~1\ADMINI~1\JD_WOR~1>jobsubmit -jdname linuxDir
Call Job Dispatcher to submit the job.
Success returned from Job Dispatcher
The job 2296ad5e-beb7-342c-ae27-1238a83fe0b8 submitted successfully

C:\DOCUME~1\ADMINI~1\JD_WOR~1>jobgetexecutionlog -id
2296ad5e-beb7-342c-ae27-1238a83fe0b8 -sizePage 400 -offset 1

 Chapter 5. Advanced guide to Tivoli Dynamic Workload Broker 239

Call Job Dispatcher to get the output of the job
Success returned from Job Dispatcher
Get Execution Log request submitted
The Execution Log Page requested is:
 otal 0
drwxrwxrwx 6 root root 248 Apr 26 06:38 eclipse
drwxr-xr-x 2 root root 216 Apr 26 06:40 logs
drwxrwxrwx 5 root root 240 Apr 26 06:37 rcp
drwxrwxrwx 3 root root 72 Apr 26 06:37 shared
drwxr-xr-x 3 root root 80 Apr 26 06:38 workspace

The file size is 247 bytes.

5.4.4 jobcancel

Invoking the jobcancel.bat (sh) script allows the user to cancel an executing job
previously submitted to the server. The job will be canceled only if it is in one of
the following states:

� SUBMITTED
� WAITING_FOR_RESOURCES
� RESOURCE_ALLOCATION_RECEIVED
� SUBMITTED_TO_ENDPOINT
� RESOURCE_REALLOCATE
� EXECUTING

The jobcancel syntax is:

jobCancel [? | [-usr <username> -pwd <password>]
 -id <job_id>
 [-configFile <configuration File>]]

Using jobcancel script
The command cancels the running of submitted jobs using the unique ID created
at job submission. To retrieve the job ID after submitting the job, you can use the
jobquery command specifying the job name. For example:

jobcancel –id 9e4465cb-cfca-3077-8ba1-178c3a4ea16d

Example 5-50 Cancelling newly submitted job using jobcancel

C:\DOCUME~1\ADMINI~1\JD_WOR~1>jobsubmit -jdname SimpleSleep2
Call Job Dispatcher to submit the job.
Success returned from Job Dispatcher
The job 9e4465cb-cfca-3077-8ba1-178c3a4ea16d submitted successfully

240 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

C:\DOCUME~1\ADMINI~1\JD_WOR~1>jobquery -name SimpleSleep2
Call Job Dispatcher to query jobs
Success returned from Job Dispatcher

There are 1 Jobs found for your request
Details are as follows:

Job Name: SimpleSleep2
Job Alias: N/A
Job ID: 9e4465cb-cfca-3077-8ba1-178c3a4ea16d
Job Status: EXECUTING
Job EPR: http://athens:9550/JDServiceWS/services/Job
Job Submitter: Administrator
Job Submitter Type: N/A
Job Submit Time: Wed May 09 13:48:41 CDT 2007
Job Start Time: Wed May 09 12:37:37 CDT 2007
Job Last Status Message: N/A
Job Duration: N/A
Job Return Code: 0
Job Resource Name: barcelona.itsc.austin.ibm.com
Job Resource Type: ComputerSystem

C:\DOCUME~1\ADMINI~1\JD_WOR~1>jobcancel -id
9e4465cb-cfca-3077-8ba1-178c3a4ea16d
Call Job Dispatcher to cancel the job
Success returned from Job Dispatcher
Job cancel request submitted

C:\DOCUME~1\ADMINI~1\JD_WOR~1>jobquery -name SimpleSleep2
Call Job Dispatcher to query jobs
Success returned from Job Dispatcher

There are 1 Jobs found for your request
Details are as follows:

Job Name: SimpleSleep2
Job Alias: N/A
Job ID: 9e4465cb-cfca-3077-8ba1-178c3a4ea16d
Job Status: CANCELLED
Job EPR: http://athens:9550/JDServiceWS/services/Job
Job Submitter: Administrator
Job Submitter Type: N/A
Job Submit Time: Wed May 09 13:48:41 CDT 2007

 Chapter 5. Advanced guide to Tivoli Dynamic Workload Broker 241

Job Start Time: Wed May 09 12:37:37 CDT 2007
Job End Time: Wed May 09 12:38:56 CDT 2007
Job Last Status Message: N/A
Job Duration: 0d 0h 1m 19s 0ms
Job Return Code: 0
Job Resource Name: barcelona.itsc.austin.ibm.com
Job Resource Type: ComputerSystem

5.4.5 jobdetails

Invoking the jobdetails.bat (sh) script allows an authorized user to view details on
a submitted job using the unique ID created at job submission.

The jobdetails syntax is:

jobDetails [? | [-usr <username> -pwd <password>]
 -id <job_id>
 [-v]
 [-configFile <configuration_File>]]

Using jobdetails script
This command invokes the Tivoli Dynamic Workload Broker server Web
services, showing the job details information. Passing the –v parameter script
provides more detailed information. For example:

jobdetails –id 5a116c18-af44-33c0-a37f-afc56d72d922 -v

Example 5-51 Obtaining summary and detail job information using the jobdetails
command

C:\DOCUME~1\ADMINI~1\JD_WOR~1>jobsubmit -jdname SimpleSleep
Call Job Dispatcher to submit the job.
Success returned from Job Dispatcher
The job 5a116c18-af44-33c0-a37f-afc56d72d922 submitted successfully

C:\DOCUME~1\ADMINI~1\JD_WOR~1>jobdetails -id
5a116c18-af44-33c0-a37f-afc56d72d922
Call Job Dispatcher to get the job properties
Success returned from Job Dispatcher

Job ID: 5a116c18-af44-33c0-a37f-afc56d72d922
Job Status: EXECUTING

C:\DOCUME~1\ADMINI~1\JD_WOR~1>jobdetails -id
5a116c18-af44-33c0-a37f-afc56d72d922 -v

242 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Call Job Dispatcher to get the job properties
Success returned from Job Dispatcher

Job ID: 5a116c18-af44-33c0-a37f-afc56d72d922
Job Name: SimpleSleep
Job Alias: N/A
Job Status: EXECUTING
Job Submitter: Administrator
Job Submitter Type: TDWB CLI
Client notification: N/A
Job Last Status Message: N/A
Job Submit Time: Wed May 09 13:57:06 CDT 2007
Job Start Time: Wed May 09 05:27:15 CDT 2007
Job End Time: N/A
Job Duration: N/A
Job Return Code: N/A
Job Resource Name: oslo
Job Resource Type: ComputerSystem

5.4.6 jobquery

Invoking the jobquery.bat (or sh) script allows an authorized user to perform an
advanced query on a submitted job based on the following attributes:

� Job status:
– 0 - all supported job states
– 1 - all submitted
– 2 - waiting for resources
– 3 - resource allocation received
– 4 - submitted to agent
– 5 - running
– 6 - cancel pending
– 7 - canceling reallocation
– 41 - resource allocation failed
– 42 - run failed
– 43 - competed successfully
– 44 - canceled
– 45 - unknown job
– 46 - job not started

� Name of the user who submitted the job
� Job name
� Job completion date

 Chapter 5. Advanced guide to Tivoli Dynamic Workload Broker 243

The jobquery syntax is:

jobquery [? | [-usr <username> -pwd <password>]
 { [-status <status number> |]
 [-submitter <submitter>]

[-name <job_definition_name>]
[-alias <job_alias>]
[-sbf <submit_date_from>]
[-sbt <submit_date_to>]
[-jsdf <job_start_date_from>]
[-jsdt <job_start_date_to>]
[-jedf <job_start_date_from>]]
[-jedt <job_start_date_to>]] }

 [-configFile <configuration_file>]]

Using the jobquery script
For example:

jobquery.bat –status 44

This command invokes the Tivoli Dynamic Workload Broker server Web services
and shows details for all jobs in a CANCELLED state in the job dispatcher
database. See Example 5-52.

Example 5-52 Using the jobquery command

C:\DOCUME~1\ADMINI~1\JD_WOR~1>jobquery -status 44
Call Job Dispatcher to query jobs
Success returned from Job Dispatcher

There are 2 Jobs found for your request
Details are as follows:

Job Name: SimpleSleep
Job Alias: N/A
Job ID: 3923e506-78ed-3ad4-ae39-92903cf26146
Job Status: CANCELLED
Job EPR: http://athens:9550/JDServiceWS/services/Job
Job Submitter: Administrator
Job Submitter Type: N/A
Job Submit Time: Wed May 09 11:21:02 CDT 2007
Job Start Time: Wed May 09 02:51:22 CDT 2007
Job End Time: Wed May 09 02:52:15 CDT 2007
Job Last Status Message: N/A
Job Duration: 0d 0h 0m 53s 0ms
Job Return Code: 0

244 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Job Resource Name: oslo
Job Resource Type: ComputerSystem

Job Name: SimpleSleep2
Job Alias: N/A
Job ID: 9e4465cb-cfca-3077-8ba1-178c3a4ea16d
Job Status: CANCELLED
Job EPR: http://athens:9550/JDServiceWS/services/Job
Job Submitter: Administrator
Job Submitter Type: N/A
Job Submit Time: Wed May 09 13:48:41 CDT 2007
Job Start Time: Wed May 09 12:37:37 CDT 2007
Job End Time: Wed May 09 12:38:56 CDT 2007
Job Last Status Message: N/A
Job Duration: 0d 0h 1m 19s 0ms
Job Return Code: 0
Job Resource Name: barcelona.itsc.austin.ibm.com
Job Resource Type: ComputerSystem

5.4.7 movehistorydata

Archive a database table using the movehistorydata script. A user can use the
movehistorydata script to move the data from the JobRepository database to the
archive database tables. Job are moved in the following database tables:

� JOA_JOBS_ARCHIVES
� JRA_JOB_RESOURCE_ARCHIVES
� MEA_METRIC_ARCHIVES

The movehistorydata syntax is:

MoveHistoryData [? | [-dbUsr <username> -dbPwd <password>]
-successfulJobsMaxAge <successfulJobsMaxAge>

 -notSuccessfulJobsMaxAge <notSuccessfulJobsMaxAge>
-archivedJobsMaxAge <- -archivedJobsMaxAge >]

 Chapter 5. Advanced guide to Tivoli Dynamic Workload Broker 245

Using movhistorydata script
The following is an example of movhistorydata script usage:

movehistorydata.bat -successfulJobsMaxAge 1 - notSuccessfulJobsMaxAge 2
- archivedJobsMaxAge 4

Example 5-53 movhistorydata script

1\JD_WOR~1>movehistorydata -successfulJobsMaxAge 0
-notSuccessfulJobsMaxAge 0 -archivedJobsMaxAge 0 -dbUsr db2admin -dbPwd
itso05

History data successfully moved
1\JD_WOR~1>

246 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Chapter 6. High availability and
recovery considerations

In this chapter we look at the configuration of the Tivoli Dynamic Workload Broker
server in a high availability cluster that includes DB2, WebSphere Application
server, and Tivoli Dynamic Workload Broker server. This chapter focuses on the
installation and configuration of all of the products that are prerequisites for the
Tivoli Dynamic Workload Broker server using Tivoli System Automation. We
cover the following topics in detail:

� “High-availability scenario” on page 248
� “IBM Tivoli System Automation for Multiplatforms” on page 248
� “Installing and configuring DB2” on page 255
� “Installing and configuring WebSphere Application Server” on page 263
� “Installing and configuring Tivoli Dynamic Workload Broker” on page 271
� “Testing the environment” on page 280

6

© Copyright IBM Corp. 2007. All rights reserved. 247

6.1 High-availability scenario

The only scenario that we describe in this chapter is passive-active failover,
where there is a single Tivoli System Automation cluster with one active master
node and one standby node. All three applications (namely DB2, WebSphere
Application server, and Tivoli Dynamic Workload Broker server) are installed on
both the master and standby node local disks. Tivoli System Automation
monitors these three applications, and if there is a problem then Tivoli System
Automation moves the application from one side to the other side by stopping the
application and then starting it on the other side.

A passive-active high availability scenario is shown in 6.1, “High-availability
scenario” on page 248.

Figure 6-1 Passive-active HA scenario

6.2 IBM Tivoli System Automation for Multiplatforms

IBM Tivoli System Automation for Multiplatforms (Tivoli System Automation) is a
product that provides high availability (HA) by automating the control of IT
resources such as processes, file systems, IP addresses, and other resources. It
facilitates the automatic switching of users, applications, and data from one
system to another in the cluster after a hardware or software failure.

248 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

6.2.1 How Tivoli System Automation works

The Tivoli System Automation product provides HA by automating resources
such as processes, applications, and IP addresses. To automate an IT resource
(for example, an IP address), the resource must be defined to Tivoli System
Automation. Every application must be defined as a resource in order to be
managed and automated with Tivoli System Automation. Application resources
are usually defined in the generic resource class IBM.Application. For the HA IP
address, the resource class IBM.ServiceIP must be used.

Reliable Scalable Cluster Technology (RSCT) is a product fully integrated into
Tivoli System Automation. RSCT is a set of software products that together
provide a comprehensive clustering environment for AIX and Linux. RSCT is the
infrastructure to provide clusters with improved system availability, scalability, and
ease of use. RSCT provides three basic components, or layers, of functionality:

� Resource Monitoring and Control (RMC) provides global access for
configuring, monitoring, and controlling resources in a peer domain.

� High Availability Group Services (HAGS) is a distributed coordination,
messaging, and synchronization service.

� High Availability Topology Services (HATS) provides a scalable heartbeat for
adapter and node failure detection, and a reliable messaging service in a peer
domain.

Terminology
Some of the key terms used in describing Tivoli System Automation are:

� Cluster or peer domain

The group of host systems upon which Tivoli System Automation manages
resources is known as a cluster. A cluster can consist of one or more systems
or nodes.

� Resource

A resource is any piece of hardware or software that can be defined to Tivoli
System Automation. These resources can be either defined manually by the
administrator using the mkrsrc (make resource) command or through the
harvesting functionality of the cluster infrastructure, whereby resources are
automatically detected and prepared for use. All resources are controlled
through the appropriate resource managers.

� Resource class

A resource class is a collection of resources of the same type. For example, if
an application is a resource, then all applications defined in the cluster would
comprise a resource class. Resource classes allow you to define the common
characteristics among the resources in its class. In the case of applications,

 Chapter 6. High availability and recovery considerations 249

the resource class can define identifying characteristics, such as the name of
the application, and varying characteristics, such as whether the application is
running. So each resource in the class can then be noted by its
characteristics at any given time.

� Resource group

Resource groups are logical containers for a collection of resources. This
container allows you to control multiple resources as a single logical entity.
Resource groups are the primary mechanism for operations within Tivoli
System Automation. Resource groups can also be nested, meaning that
applications can be split into several resource groups, which themselves are
part of another higher-level resource group. Also, resource groups can be
defined in such a way that their members can be located on different systems
in the cluster.

� Managed resource

A managed resource is a resource that has been defined to Tivoli System
Automation. To accomplish this, the resource is added to a resource group, at
which time it becomes manageable through Tivoli System Automation.

� Nominal state

The nominal state of a resource group indicates to Tivoli System Automation
whether the resources with the group should be online or offline at this point
in time. So setting the nominal state to offline indicates that you wish for Tivoli
System Automation to stop the resources in the group, and setting the
nominal state to online.is an indication that you wish to start the resources in
the resource group.

� Equivalency

An equivalency is a collection of resources that provide the same functionality.
For example, equivalencies are used for selecting network adapters that
should host an IP address. If one network adapter goes offline, Tivoli System
Automation selects another network adapter to host the IP address.

� Relationships

Tivoli System Automation allows for the definition of relationships between
resources in a cluster. There are two different relationship types:

– Start/stop relationships

These relationships are used to define start and stop dependencies
between resources. You can use the StartAfter, StopAfter, DependsOn,
DependsOnAny, and ForcedDownBy relationships to achieve this. For
example, a resource must only be started after another resource was
started. You can define this by using the policy element StartAfter
relationship.

250 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

– Location relationships

Location relationships are applied when resources must, or should if
possible, be started on the same or a different node in the cluster.

� Resource manager

Resource classes are managed by the various resource managers (RMs),
depending on what type of resource is being managed. A resource manager
is a software layer between a resource and RMC. The following resource
managers are provided by Tivoli System Automation:

– Recovery RM (IBM.RecoveryRM)

This resource manager serves as the decision engine for Tivoli System
Automation. When a policy for defining resource availability and
relationships is defined, this information is supplied to the Recovery RM.
This RM runs on every node in the cluster, with exactly one Recovery RM
designated as the master. The master evaluates the monitoring
information from the various resource managers. When a situation
develops that requires intervention, the Recovery RM drives the decisions
that result in start or stop operations on the resources as needed.

– Global Resource RM

The Global Resource RM (IBM.GblResRM) supports two resource
classes:

• IBM.Application

The IBM.Application resource class defines the behavior for general
application resources. This class can be used to start, stop, and
monitor processes. As a generic class, it is very flexible and can be
used to monitor and control various kinds of resources. Most of the
applications that you automate are done using this class.

• IBM.ServiceIP

This application class defines the behavior of Internet Protocol (IP)
address resources. It allows you to assign IP addresses to an adapter.
In effect, it allows IP addresses to float among nodes.

– Configuration RM

The Configuration RM (IBM.ConfigRM) is used in the cluster definition. In
addition, quorum support, which is a means of insuring data integrity when
portions of a cluster lose communication, is provided.

– Event Response RM

The Event Response RM (IBM.ERRM) provides the ability to monitor
conditions in the cluster in order for the RMC system to react in certain
ways.

 Chapter 6. High availability and recovery considerations 251

– Test RM

The Test resource manager (IBM.TestRM) manages test resources and
provides functions to manipulate the operational state of these resources.
The resource manager is operational in a peer domain mode only and
provides the resource class IBM.Test.

For more detailed information about Tivoli System Automation Resource
Managers see IBM Tivoli System Automation for Multiplatforms Base Component
User's Guide, SC33-8210.

6.2.2 Installing and configuring Tivoli System Automation

In this section we look at installing and configuring Tivoli System Automation. For
more detailed information refer to IBM Tivoli System Automation for
Multiplatforms Base Component User's Guide, SC33-8210.

Before installing Tivoli System Automation make sure that both nodes are able to
communicate with each other using host names and fixed IP addresses. Insert
both names in the /etc/hosts file on both systems. In this manner, Domain Name
System (DNS) server failures outside of the cluster do not affect the high
availability of the cluster.

For our discussion, we use the nodes edinburgh (as nodeA) and prague (as
nodeB). The IP address of edinburough is 9.3.5.169 and the IP address of
prague is 9.3.5.97. We also set up three alias IP addresses for the three products
(namely, DB2, WebSphere Application Server, and Inter-grated Solutions
console, which are using 9.3.5.90, 9.3.5.91, and 9.3.5.93 respectfully). The hosts
filed on both sides of the cluster looked like Example 6-1.

Example 6-1 The /etc/hosts file

127.0.0.1 localhost.localdomain localhost
9.3.5.169 edinburgh.itsc.austin.ibm.com edinburgh nodeA
9.3.5.97 prague.itsc.austin.ibm.com prague nodeB
9.3.5.90 db2
9.3.5.91 was
9.3.5.93 isc

Installation of Tivoli System Automation
Installation steps are as follows:

1. If you downloaded the tar file from the Internet, extract the file using the
following command:

tar -xvf <tar file>

252 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

If you got the product on a CD, mount the CD and change to the directory
where the CD is mounted. Now change to the appropriate directory.

2. Install the product on each system in the cluster with the installSAM script as
the root user:

./installSAM

3. Tivoli System Automation requires that a valid product license is installed on
each system it is running on. The license is contained on the installation
medium in the license sub directory. The installation of the license is usually
performed during the product installation process. In case this did not
succeed, or you want to upgrade from a Try & Buy license to a full license of
the product, issue the following command to install the license:

samlicm –i license_file

In order to display the license, issue:

samlicm -s

4. After installation, ensure that the variable CT_MANAGMENT_SCOPE is
always set to 2 in the shell. Consider inserting this into the system-wide shell
profile.

5. Install the fix packs in a similar manner on both systems in the cluster, as
shown in Example 6-2.

Example 6-2 Upgrading Tivoli System Automation

[root@edinburgh]# CT_MANAGEMENT_SCOPE=2
[root@edinburgh]# export CT_MANAGEMENT_SCOPE
[root@edinburgh]# cd /root/code/SA/SAM2111Base
[root@edinburgh]# ./installSAM

6. Install the latest Tivoli System Automation policies, as shown in Example 6-3.
You can download them from the following Web site:

ftp://ftp.software.ibm.com/software/tivoli/products/sys-auto-linux/

Example 6-3 Installing Tivoli System Automation policies

[root@edinburgh]# rpm -ivh sam.policies-1.2.2.1-06212.i386.rpm

Configuration of Tivoli System Automation
Configuring Tivoli System Automation to automate or to manage resources
involves the following basic steps:

1. Prepare both nodes.

preprpnode - This command prepares the security settings for the node to be
included in a cluster. When issued, public keys are exchanged among the

 Chapter 6. High availability and recovery considerations 253

ftp://ftp.software.ibm.com/software/tivoli/products/sys-auto-linux/

nodes, and the RMC access control list (ACL) is modified to enable access to
cluster resources by all of the nodes of the cluster.

2. Create a Tivoli System Automation Domain.

mkrpdomain - This command creates a new cluster definition. It is used to
specify the name of the cluster and the list of nodes to be added to the cluster.

3. Create a resource group.

reghadrsalin - This command can be used to create a resource group.

4. Add resources to the resource group.

addrgmbr - This command adds one or more resources to a resource group.

5. Create equivalencies (typically used for IP address resources).

mkequ - This command makes an equivalency resource.

6. Specify dependencies.

mkrel - This command is used to make dependencies.

In order to create a new resource of the application resource class (for example,
for the Deployment Manager), the following three scripts (or commands,
respectively) must be provided:

1. A start script (or command) to bring the resource online
2. A stop script (or command) to take the resource offline
3. A script (or command) to monitor the resource through polling

To configure Tivoli System Automation:

1. Prepare both of the nodes and create the cluster by running the commands
shown in Example 6-4.

Example 6-4 Preparing the Tivoli System Automation domain

[root@edinburgh]# preprpnode edinburgh prague
[root@edinburgh]# mkrpdomain itsoDomain edinburgh prague
[root@edinburgh]# startrpdomain itsoDomain

2. Wait for the domain to come online. To check that the domain has started and
is online you can use the command lsrpdomain, as shown in Example 6-5.

Example 6-5 Checking that the domain is online

[root@edinburgh]# /usr/sbin/rsct/bin/lsrpdomain
Name OpState RSCTActiveVersion MixedVersions TSPort GSPort
itsoDomain Online 2.4.6.2 No 12347 12348

3. Define a tie breaker. Tie breakers are necessary on clusters where there is an
even number of nodes. This is to ensure that the cluster remains operational

254 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

even when there is a total communication failure or node failure. The different
types of tie breakers and how to configure them are explained in Chapter 10,
“Protecting your resources - quorum support,” of the IBM Tivoli System
Automation for Multiplatforms Base Component User's Guide, SC33-8210.
Use a network tie breaker that points to the gateway used by both cluster
nodes, as shown in Example 6-6. Note that the keywords are case-sensitive.

Example 6-6 Define a tie breaker

[root@edinburgh]# mkrsrc IBM.TieBreaker Type=“EXEC” Name=“netTieBrk” \
DeviceInfo='PATHNAME=/usr/sbin/rsct/bin/samtb_net \
Address=9.3.5.255 Log=1' PostReserveWaitTime=30

4. Activate the tie breaker with the following command:

[root@edinburgh]# chrsrc -c IBM.PeerNode \
OpQuorumTieBreaker=“netTieBrk”

5. Define a netmon.cf file on each node. Create a file named netmon.cf in the
/usr/sbin/cluster directory. In this file, place the IP address of each network
interface's gateway, one address per line, as shown in Example 6-7.

Example 6-7 The netmon.cf file

9.3.5.255

6.3 Installing and configuring DB2

The first step is to install DB2 Universal Database on both nodes. In this example
we use the graphical installation for DB2, and for the most part use default
selections.

 Chapter 6. High availability and recovery considerations 255

6.3.1 Installation DB2 UDB

To install DB2 Universal Database on both nodes, perform the following steps:

1. Log in as root, and from the installation media run db2setup to install DB2.
Perform this step on both sides of the cluster using the same configuration.
The wizard runs and you will be presented with the DB2 setup welcome
screen, as shown in Figure 6-2.

Figure 6-2 DB2 welcome screen

2. On the next screen accept the license agreement and click Next.

256 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

3. On the next screen select the typical install, as shown in Figure 6-3, then click
Next.

Figure 6-3 DB2 install; Select the type of installation

4. On the next screen check the Install DB2 Enterprise Server Edition then
click Next.

 Chapter 6. High availability and recovery considerations 257

5. On the next screen you are presented with the user information. Use the
same DB2 Administration Server (new user) (dasusr1, db2iadm1) with
/opt/IBM/db2/v8.1 as the same home directories supplied, as shown in
Figure 6-4. Then click Next.

Figure 6-4 Creating the DB2 Administration Server user

Tip: Keep the installation the same on both sides of the cluster. Also
remember the supplied password.

258 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

6. Create the fenced user (db2fenc1) and fenced group (db2fadm1) during this
process, with the directory /opt/IBM/DB2/v8.1/db2fenc1, as shown in
Figure 6-5.

Figure 6-5 Creating the DB2 fence user

7. You will be prompted to create a DB2 instance. Select Create a DB2
instance, as shown in Figure 6-6. Then click Next.

Figure 6-6 Creating a DB2 instance

8. On the next screen select Single-partition instance, then click Next.

Tip: Keep the installation the same on both sides of the cluster. Also
remember the supplied password.

 Chapter 6. High availability and recovery considerations 259

You are then presented with a progress installation bar, as shown in
Figure 6-7.

Figure 6-7 DB2 installation progress bar

9. The install wizard then presents a setup complete screen. Check the Status
report tab on the final setup panel to ensure that your installation is complete
and correct, then click Finish.

6.3.2 Configuration of DB2 for Tivoli System Automation

In this section we go through the steps to configure DB2 for Tivoli System
Automation so that Tivoli System Automation monitors and manages the DB2
failover. After this is in place, do not manually issue DB2 takeover commands.
Instead, use the appropriate Tivoli System Automation commands to perform this
function.

1. First ensure that hadr_domain is online by issuing the following command, as
shown in Example 6-8.

[root@edinburgh ~]# lsrpdomain

Example 6-8 List of all Tivoli System Automation domains

[root@edinburgh ~]# lsrpdomain
Name OpState RSCTActiveVersion MixedVersions TSPort GSPort
itsoDomain Online 2.4.6.2 No 12347 12348

260 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

2. Ensure that all nodes are online in the domain, as shown in Example 6-9.

Example 6-9 List of all Tivoli System Automation nodes

[root@edinburgh ~]# lsrpnode
Name OpState RSCTVersion
prague Online 2.4.6.2
edinburgh Online 2.4.6.2

3. On both nodes, first the standby node, then the primary node, register the
DB2 instances with Tivoli System Automation using the command shown in
Example 6-10. The command is found in the /opt/IBM/db2/V8.1/ha/salinux
directory.

Example 6-10 Running the database registration script

[root@prague]# ./regdb2salin -a db2inst1 -r -s
[root@edinburgh]# ./regdb2salin -a db2inst1 -r -s

4. Verify that the resource groups are registered and online by issuing the
following command:

/usr/sbin/rsct/sapolicies/bin/getstatus

You see an output similar to Example 6-11.

Example 6-11 Output of getstatus command

-- Resource Groups and Resources --
 Group Name Resources
 ---------- ---------
 db2_db2inst1_edinburgh_0-rg db2_db2inst1_edinburgh_0-rs
 db2_db2inst1_prague_0-rg db2_db2inst1_prague_0-rs
-- Resources --
 Resource Name Node Name State
 ------------- --------- -----
db2_db2inst1_edinburgh_0-rs edinburgh Online
 - - -
db2_db2inst1_prague_0-rs prague Online
 - - -

 Chapter 6. High availability and recovery considerations 261

5. On the primary node (edinburgh) create a Tivoli System Automation resource
group for the HADR pair, and check its status with the commands, as shown
in Example 6-12. (9.3.5.90 is the service IP address to which you connect the
Tivoli Dynamic Workload Broker application server.) The Tivoli Dynamic
Workload Broker creates two databases (TDWB and IBMCDB), so we need to
create two resource groups.

Example 6-12 Creating resource groups

./reghadrsalin -a db2inst1 -b db2inst1 -d TDWB
./reghadrsalin -a db2inst1 -b db2inst1 -d IBMCDB

6. Create a service dependency relationship between the HADR database and
the IP interfaces of the nodes. Before you configure these relationships, stop
HADR (as root on both nodes). See Example 6-13.

Example 6-13

chrg -o offline db2hadr_TDWB-rg
chrg -o offline db2hadr_IBMCDB-rg

You can use the getstatus command until the HADR resources change to
offline.

7. Create the Automation relationships between the HADR application, the
service IP address, and the network equivalency (as root on both nodes), as
shown in Example 6-14. This ensures that the resources start and stop in the
correct order.

Example 6-14 Making dependency relationship

mkrel -p dependsOn -S IBM.Application:db2hadr_TDWB-rs \
-G IBM.ServiceIP:db2_ip-rs tdwbdb_do_ip

mkrel -p dependsOn -S IBM.Application:db2hadr_IBMCDB-rs \
-G IBM.ServiceIP:db2_ip-rs ibmcdbdb_do_ip

lsrel
Displaying Managed Relations :

Name Class:Resource:Node[Source] ResourceGroup[Source]
tdwbdb_do_ip IBM.Application:db2hadr_TDWB-rs db2hadr_TDWB-rg
ibmcdbdb_do_ip IBM.Application:db2hadr_IBMCDB-rs db2hadr_IBMCDB-rg
iscip_do_equ IBM.ServiceIP:isc-ip isc_ip-rg
brokerip_do_equ IBM.ServiceIP:broker-ip broker_ip-rg

262 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

8. Turn the HADR application back on with the command shown in
Example 6-15.

Example 6-15 Turning the HADR application back on

chrg -o online db2hadr_TDWB-rg
chrg -o online db2hadr_IBMCDB-rg

9. Check the status of the resources with the getstatus command. Now you
have to tell DB2 that the Tivoli Dynamic Workload Broker database lives on
the service IP:

%db2 CATALOG TCPIP NODE LBNODE REMOTE 9.3.5.90 SERVER 50000

6.4 Installing and configuring WebSphere Application
Server

This section describes the steps needed to install and configure IBM WebSphere
Application Server V6.0 and configure on a cluster using Tivoli System
Automation. IBM WebSphere Application Server has to be installed and patched
to the correct level on both sides of the cluster before installing Tivoli Dynamic
Workload Broker.

6.4.1 Installing WebSphere Application Server

To install IBM WebSphere Application Server on both nodes, perform the
following steps:

1. Before installing, identify the installation directory. This item is required when
running the installation script.

2. Log in to the node where you want to install the WebSphere Application
Server, as a root user.

3. Change directory to the install media and type:

install

4. Providing that you have the display parameters set correctly, the install wizard
displays a welcome screen. Read the welcome information and click Next.

 Chapter 6. High availability and recovery considerations 263

5. Read the license agreement, select the acceptance radio button, and click
Next, as seen in Figure 6-8.

Figure 6-8 WAS install: license agreement screen

6. You are then presented with the System prerequisites check screen. Read
this and if the last line states Your system completed the prerequisites
check successfully then click Next.

264 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

7. You are now presented with the Installation directory screen. Yype in the
directory where you would like the installation to reside, then click Next, as
seen in Figure 6-9.

Figure 6-9 WAS installation: Installation directory screen

Tip: Keep the installation directory the same for both systems in the
cluster.

 Chapter 6. High availability and recovery considerations 265

8. Choose the type of installation (ether a full or custom installation), select Full
installation, and click Next, as seen in Figure 6-10.

Figure 6-10 WAS install: type of install

9. The next screen is a summary screen. Read this screen to check that it will
install every thing you wish, then click Next.

266 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

10.The next screen is a installation progress bar. Wait until it returns with
Installation Complete, check the Launch the first steps console radio
button, and click Finish, as seen in Figure 6-11.

Figure 6-11 WAS Install: Installation complete screen

 Chapter 6. High availability and recovery considerations 267

11. The next screen is the WebSphere Application Server first steps. Click
Installation verification to see whether the server is installed correctly, as
seen in Figure 6-12.

Figure 6-12 WAS installation: installation verification

12.Once you have selected the installation verification, a new screen appears.
Check this screen for any errors once the last line reads Installation
Verification complete.

13.Close the verification screen and click Exit on the First steps screen. This
finishes the base install of WebSphere Application Server.

14.Repeat steps 1 through to 13 on the second node using the same settings as
the first node.

We now have the WebSphere Application Server installed on both sides of the
cluster. The next set is to install the patch, as described next.

268 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

6.4.2 Installing WebSphere Application Server patch

WebSphere Application Server, Version 6.0, 32-bit version, with Refresh Pack 2
and Fix Pack 11 is a prerequisite for the successful installation of Tivoli Dynamic
Workload Broker. Below are the main steps needed to install the WebSphere
Application Server patch, but for more details refer to the readme file.

1. Log in as root.

2. Change the directory to where the WebSphere Application Server is installed:

#cd /opt/IBM/WebSphere/AppServer

3. Extract the tar file in this directory:

#tar xvf 6.0.2-WS-WAS-LinuxX32-FP00000011.tar

4. Extracting the tar file creates a directory called updateinstaller. Change to this
directory and run the executable update.

5. First a welcome screen appears. Read this and then click Next.

6. The next screen asks for the location of the WebSphere product that you wish
to update. Type in /opt/IBM/WebSphere/AppServer or the location of your
WebSphere Application Server installation and click Next, as shown in
Figure 6-13.

Figure 6-13 WAS FP 02 Installation: Location of WebSphere Application Server

7. The next screen asks you whether you wish to install or uninstall a
maintenance package. Select Install maintenance package and click Next.

 Chapter 6. High availability and recovery considerations 269

8. On the next screen type in the name of the maintenance package to install,
then click Next.

9. On the next screen you will see that the JDK™ was successfully copied and
the install wizard needs to be relaunched. Click Relaunch to finish the
installation, as shown in Figure 6-14.

Figure 6-14 WAS FP 02 Installation: relaunch Installer wizard

10.You are then presented with an information screen as to which application
server will be upgraded and with which maintenance package. Check this and
when satisfied click Next.

The next screen shows the component being backed up.

11.You are presented with a success screen stating that the product was
successfully upgraded. Click Finish.

12.Repeat the steps 1 through to 12 on the second node using the same settings
as the first node.

We now have WebSphere Application Server FP 02 installed on both sides of the
cluster. The next step is to configure WebSphere Application Server on the Tivoli
System Automation, as described in 6.4.3, “Set up WebSphere Application
Server on Tivoli System Automation” on page 271.

270 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

6.4.3 Set up WebSphere Application Server on Tivoli System
Automation

As Tivoli Dynamic Workload Broker is an application that runs on the WebSphere
Application Server, we do not have to set up WebSphere Application Server on
Tivoli System Automation, but if you would like to do this then refer to Chapter 10
of WebSphere Application Server Network Deployment V6: High Availability
Solutions, SG24-6688.

6.5 Installing and configuring Tivoli Dynamic Workload
Broker

This section describes the steps needed to install and configure Tivoli Dynamic
Workload Broker and configure on a cluster using Tivoli System Automation. The
Tivoli Dynamic Workload Broker server has to be installed and patched to the
correct level on both sides of the cluster.

6.5.1 Installing Tivoli Dynamic Workload Broker

This section describes the steps needed to install the Tivoli Dynamic Workload
Broker server. For a full installation description refer to IBM Tivoli Dynamic
Workload Broker Installation and Configuration, SC32-2282. On both nodes
perform the following steps:

1. Before installing, identify the installation directory. This item is required when
running the installation script.

2. Log in to the node where you want to install the Tivoli Dynamic Workload
Broker server, as a root user.

3. Change the directory to the install media and type:

setuplinux.bin

 Chapter 6. High availability and recovery considerations 271

4. Provided that you have the display parameters set correctly, the install wizard
displays a welcome screen. Read the welcome information and click Next, as
shown in Figure 6-15.

Figure 6-15 Tivoli Dynamic Workload Broker Install welcome screen

5. The license agreement window is displayed. Read the license agreement.
Click Print if you want to print a copy of the license agreement. Check I
accept for both the IBM and the non-IBM terms, then click Next.

272 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

6. The installation directory window is displayed. If you want to change the
suggested directory on the window, click Browse and select a different drive
or directory. Otherwise, click Next to accept the directory, as shown in
Figure 6-16.

Figure 6-16 Tivoli Dynamic Workload Broker Install directory screen

7. Select the type of installation (either Typical or Custom). For this installation
we selected Typical. Once checked click Next.

 Chapter 6. High availability and recovery considerations 273

8. You will then be asked about the DB2 installation, as shown in Figure 6-17.

Figure 6-17 DB2 location information

All of the information displayed in this window is information about the
prerequisite DB2 database, except for the database name, which is the name
for the Tivoli Dynamic Workload Broker database. Check the following:

– DB2 driver location: The directory where the client or server version of
DB2 is installed.

– DB2 server hostname: The name of the host that you are going to connect
to DB2. The default is the fully qualified host name of the local computer.
This can be either a DB2 server or a DB2 client. For this we must use the
floating IP address, and for this installation we used 9.3.5.90.

– DB2 port: The port on which DB2 will listen. This is normally 50000.

– Database user and database user password: The DB2 instance owner
and password pair for which an account can be created on this computer.
The user ID that you enter here is used for the connection to the DB2
database. You can use the predefined user ID db2admin (Windows) or
db2inst1 (UNIX). Alternatively, you can use a new user ID if you require
greater security. If you do this, the user ID must exist in the DB2 database.
The user must be already configured in DB2 and on the DB2 server.

274 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

– DB2 local user (UNIX only): The user on the local operating system that is
running the DB2 client binaries.

– Database name: The name of the Tivoli Dynamic Workload Broker
database. There are restrictions on the length of the database name. For
more information, refer to the DB2 manuals.

The Tivoli Dynamic Workload Broker database will be created on the
computer where the DB2 server resides. The default database name
TDWB will be used unless you change it. If the database exists, the
existing database is used and the Database Name field is not displayed.

Click Next. A check is performed to establish a connection with the DB2
database server. If no connection can be made, an error message is
displayed. Make sure that the DB2 database is started. When a connection to
the DB2 database is established, the next window is displayed.

9. If a Tivoli Dynamic Workload Broker database has not previously been
installed, the DB2 additional information window is displayed, as shown in
Figure 6-18.

Figure 6-18 Additional database information

If required, specify the table space, table space directory, temporary table
space, and temporary table space directory. Otherwise leave the default
values unchanged. In our installation we left all of the options as default.

Click Next.

 Chapter 6. High availability and recovery considerations 275

10.The WebSphere Application environment window is displayed, as shown in
Figure 6-19.

Figure 6-19 WebSphere Application environment window

Check the following WebSphere information displayed in the window:

– Base install location: The directory where WebSphere Application Server
is installed.

– Profile name: The existing name of a WebSphere Application Server
profile. The profile used here must exist.

– Server name: The existing name of the WebSphere Application Server.

– Cell: The cell name. This is automatically discovered if a valid directory is
specified for the base install location.

– Node: The WebSphere node name. This is automatically discovered if a
valid directory is specified for the base install location. For our installation
we used the floating IP address of 9.3.5.91.

Click Next to continue.

276 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

11.The Tivoli Dynamic Workload Broker Ports window is displayed, as shown in
Figure 6-20.

Figure 6-20 IBM Tivoli Dynamic Workload Broker Ports

This contains the values for the two ports used by Tivoli Dynamic Workload
Broker. The TDWB port value is used for unsecure communications. The
TDWB secure port value is used for secure (SSL) communications. The
default values are provided. You can change the values if you need to do so.
For our example we changed the value of the host name to the IP address
9.3.5.91, as this IP will move with the WebSphere Application server between
the two nodes.

Click Next.

12.The Agent Manager information window is displayed. For our installation we
left all settings as default. If you are happy with the default setting click Next.

13.A installation summery window will then be displayed. Read this then click
Next.

14.An installation progress bar will be displayed, and then the installation
completed window will be displayed. Click Finish to close the installer.

6.5.2 Setting up Tivoli Dynamic Workload Broker server on Tivoli
System Automation

To configure Tivoli System Automation to manage the Tivoli Dynamic Workload
Broker, edit the configuration file and run the policy installation script to create

 Chapter 6. High availability and recovery considerations 277

the Tivoli System Automation configurations. Place the configurations and start,
stop, and monitor scripts for Tivoli Dynamic Workload Broker in
/usr/sbin/rsct/sapolicies/tdwb.

We assume that System Automation is already configured and has a domain
already set up and working. If you need to set one up then refer to 6.2.2,
“Installing and configuring Tivoli System Automation” on page 252.

1. We first make a resource group. A resource group is a container for a set of
resources that should be operated on as a single entity. It does not matter on
which system this and the following commands are executed.

mkrg broker_ip-rg

2. We need to create resource definition files for the Tivoli Dynamic Workload
Broker server and the IP address to be managed by Tivoli System
Automation. Using these examples, create your own definition text files (for
example, broker.def), as shown in Example 6-16, and run the following
commands to create the resources:

mkrsrc IBM.ServiceIP Name="broker-ip" IPAddress=9.3.5.91 \
NetMask=255.255.254.0 NodeNameList="{'edinburgh','prague'}"

Example 6-16 Creating the resources

IBM_PROLOG_BEGIN_TAG
This is an automatically generated prolog.
#
#
#
Licensed Materials - Property of IBM
#
(C) COPYRIGHT International Business Machines Corp. 2003,2006
All Rights Reserved
#
US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
#
IBM_PROLOG_END_TAG
PersistentResourceAttributes::
Name="broker-rs"
StartCommand="/usr/sbin/rsct/sapolicies/was/wasctrl-as start
/opt/IBM/WebSphere/AppServer 9550 server1"
StopCommand="/usr/sbin/rsct/sapolicies/was/wasctrl-as stop
/opt/IBM/WebSphere/AppServer 9550 server1"
MonitorCommand="/usr/sbin/rsct/sapolicies/was/wasctrl-as status
/opt/IBM/WebSphere/AppServer 9550 server1"
MonitorCommandPeriod=19

278 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

MonitorCommandTimeout=30
NodeNameList={"edinburgh","prague"}
StartCommandTimeout=300
StopCommandTimeout=180
UserName="root"
RunCommandsSync=1
ResourceType=1
ProtectionMode=1

3. We then have to add the resource to the resource group. To do this run the
following commands to add the previously created resources to the resource
group:

addrgmbr -g broker_ip-rg IBM.ServiceIP:broker-ip

4. Next we create the equivalencies. Create an equivalency for the network
adapters on both servers that we want to use for the IP alias. After creating
the equivalencies you can list these by using the command lsequ, as shown
in Example 6-17.

mkequ -D "Name like 'eth0'" broker_equ IBM.NetworkInterface

Example 6-17 Display equivalencies

lsequ
Displaying Equivalencies :
broker_equ
db2_equ

5. We now need to specify the dependencies. Execute the following command to
specify that the IP address is dependant on the equivalence:

mkrel -p dependson -S IBM.ServiceIP:broker-ip -G \
IBM.Equivalency:broker_equ brokerip_do_equ

To display the managed relations use the command lsrel, as shown in
Example 6-18.

Example 6-18 Displaying managed relations

[root@edinburgh db2]# lsrel
Displaying Managed Relations :

Name Class:Resource:Node[Source] ResourceGroup[Source]
tdwbdb_do_ip IBM.Application:db2hadr_TDWB-rs db2hadr_TDWB-rg
ibmcdbdb_do_ip IBM.Application:db2hadr_IBMCDB-rs db2hadr_IBMCDB-rg
brokerip_do_equ IBM.ServiceIP:broker-ip broker_ip-rg

 Chapter 6. High availability and recovery considerations 279

6.6 Testing the environment

To test a failover manually, you can move the Tivoli System Automation
resources for the Tivoli Dynamic Workload Broker server to the other node with
the commands shown in Example 6-19.

Example 6-19 Manually moving the server

rgreq -o move db2hadr_TDWB-rg
rgreq -o move broker_ip-rg

Use the getstatus command to see the outcome and that the resource group is
now online on the other side.

280 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Chapter 7. Performance optimization

The performance of Tivoli Dynamic Workload Broker depends largely on how it is
configured in the customer environment. After the initial installation, the product
is ready to be up and running with its configuration parameters set with some
default values. There is not an absolute best configuration, but configuration for
best performance varies based on the environment in which the product runs and
the expectations from the product. In this chapter we describe how to configure
the Tivoli Dynamic Workload Broker and what the best practices are to tune it for
performance optimization.

The following are discussed in this chapter:

� “Configuration parameters” on page 282
� “Performance configuration parameters on server” on page 282
� “Performance configuration parameters on the agent” on page 289
� “Best practices” on page 291
� “Scalability tests” on page 297

7

© Copyright IBM Corp. 2007. All rights reserved. 281

7.1 Configuration parameters

The configuration of the Tivoli Dynamic Workload Broker, for both server and
agent, is essentially stored in properties files (for the server also in WebSphere
Application Server configuration files). These properties files are created at
installation time, so it is not required to modify them once the product is installed.
The Tivoli Dynamic Workload Broker is configured with some of the values
specified during the installation process, as well as the URL location of the agent
manager, but for many others, default values are used.

All of the parameters influencing the performance of the product are set to default
values. These values are the best values for a general use of the product but not
necessarily the best values for your environment. This is because performances
can depend largely on many factors as well as the number of agents, expected
jobs running in a day, the maximum number of jobs running concurrently, the
CPU on the server, the network bandwidth, and so on. It would be a good
practise to tune the configuration on the server and on the agents to run the IBM
Tivoli Dynamic Workload Broker using the correct configuration.

The server can be configured by modifying some of the parameters defined in
the properties files, located under the directory <install location>/config,
JobDispatcherConfig.properties and ResourceAdvisorConfig.properties.

The agent can be configured by modifying some of the parameters defined in the
properties file, ResourceAdvisorAgentConfig.properties, located under the
directory <install location>/ep/runtime/agent/subagents, and
JobExecutionAgentConfig.properties, located under the directory <install
location>/ep/runtime/agent/subagents/JobExecutionAgent.

The parameters can be easily modified by simply editing the properties file in a
flat text editor, or, for the JobExecutionAgentConfig, using the command-line
interface on the agent.

7.2 Performance configuration parameters on server

We start by discussing performance configuration parameters on the server.

7.2.1 Job Dispatcher

The JobDispatcherConfig defines the behavior of the server in relation to the
dispatching of jobs. Each of these properties defines a rule on how the server

282 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

processes jobs, manages their status changes, and saves them in the job
repository database.

The properties are reloaded by the server at an interval time defined with the
FailQinterval parameter and each of them must be a integer number included in
the interval of values defined in the Range column. If not so, the default value is
taken. Also, in the Runtime changes column, no indicates that the WebSphere
application server must be restarted to have the new value be effective. Table 7-1
shows the Job Dispatcher properties parameters.

Table 7-1 Job Dispatcher properties

Property Definition Default Range Run-
time
change

FailQInterval Specifies the numbers of
seconds for retrying the
operation after the following Job
Dispatcher failures:
� Client notification
� Allocation, Reallocate,

Cancel Allocation requests
to Resource Advisor

� Any operation on DB failed
for connectivity reasons

30 seconds 5–600 Yes

MaxNotificatio
nCount

Specifies the maximum number
of retries after a Job Dispatcher
failure.

1440 20–288
00

Yes

MoveHistoryD
ataFrequency
InMins

Specifies how often job data
must be checked:
� To be moved to the archive

tables in the Job Repository
database

� To be removed from the
archive database tables

60 minutes 5–
14400

Yes

SuccessfulJo
bsMaxAge

Specifies how long jobs
completed successfully or
cancelled must be kept in the
Job Repository database before
being archived.

24 hours 1–8784 Yes

Unsuccessful
JobsMaxAge

Specifies how long jobs
completed unsuccessfully or in
unknown status must be kept in
the Job Repository database
before being archived.

72 hours 1–8784 Yes

 Chapter 7. Performance optimization 283

The Tivoli Dynamic Workload Broker V1.2 introduces a new threading model so
that the Job Dispatcher Manager can work with a configurable number of threads
to have faster queue processing. Other parameters have been added to the
JobDispatcherConfig, as specified in Table 7-2 on page 285.

By default, these parameters are not defined in the JobDispatcherConfig
properties file but you can add new rows to it in order set new values, as in
Example 7-1.

Example 7-1 Job Dispatcher configuration properties

##
Job Dispatcher Configuration Properties
#
##
Resource Advisor serivice address
RAEndpointAddress =
http://localhost:9550/RAServiceWS/services/AllocationFactory
Job Dispatcher serivice address
JDURL=http://localhost:9550
Numbers of seconds for Job ispatcher failure retry
FailQInterval = 30
maximum numbers of retry after client notification failure
MaxNotificationCount = 120
Frequency to trigger job history data move to archive and archive
cleanup
MoveHistoryDataFrequencyInMins = 60
Max age in hours to keep job successfully terminated or cancelled in
the online tables. Default 0.5 day
SuccessfulJobsMaxAge = 12
Max age in hours to keep job unsuccessfully terminated or unknown in
the online tables. Default 3 days
UnsuccessfulJobsMaxAge = 72

ArchivedJobs
MaxAge

Specifies how long jobs in the
archive database tables must be
kept in the Job Repository
database before being
removed.

168 hours 1–
43920

Yes

Property Definition Default Range Run-
time
change

284 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Max age in hours to keep job in the archive tables. Default 1 week
ArchivedJobsMaxAge = 168

MaxProcessingWorkers = 20

Table 7-2 shows additional Job Dispatcher properties parameters that will be
available with Tivoli Dynamic Workload Broker V1.2.

Table 7-2 Job Dispatcher properties - additional properties for TDWB 1.2

Property Definition Default Range Run-
time
change

MaxProcessing
Workers

Specifies how many
concurrent threads can
be used by Job
Dispatcher to process
the job status
transitions. To get the
effective maximum
number of threads that
can be created you have
to multiply this for a
factor of 2 + 20 units or 5
+20 units if the Tivoli
Workload Scheduler
agent is running on top
of the Tivoli Dynamic
Workload Broker server.

10 1–100 No

HistoryDataCh
unk

Specifies the maximum
number of jobs moved to
archive or removed from
there within each
transaction when the
history data move is
triggered.

1000 100–
10000

Yes

 Chapter 7. Performance optimization 285

7.2.2 Resource Advisor

The ResourceAdivisorConfig defines the behavior of the server in relation to the
management of allocating resources.

The properties are reloaded by the server at an interval time defined with the
CheckInterval parameter, and each of them must be a integer number included in
the range defined in the Range column. If not so, the default value is taken.

Queue.actions.
<n>

Specifies which actions
are processed by which
queue number. This
parameter allows a finer
customization of Job
Dispatcher processing
queues to be more
flexible in finding the
optimal configuration.

Queue.actions.0
= CANCEL,
CANCEL_ALLOC
ATION,
COMPLETE
Queue.actions.1
=
ALLOCATION_R
ECEIVED,
REALLOCATE
Queue.actions.2
= SUBMITTED,
NOTIFICATION,
STATUS_UPDAT
E_FAILED

0–9 Yes

Queue.size.<n
>

Specifies the size of
each queue. If set to 0, it
means that the jobs in
the corresponding
queue will be not
executed.

All equal to
MaxProcessing
Workers.
Only
Queue.size.1 =
20

1–100 Yes

286 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Table 7-3 shows the Resource Advisor properties parameters.

Table 7-3 Resource Advisor properties

Property Definition Default Range or
format

Run-time
change

RaaHeart
BeatInterv
al

Specifies the time interval within
which the Resource Advisor
expects a heartbeat signal from
the Workload Agent. When this
interval expires, the Resource
Advisor checks whether the
heartbeat signal has been
received for each Workload
Agent. After a maximum
number of consecutive times
missing, as specified in
MissedHeartBeatCount, the
Resource Advisor sets the
related computer to unavailable.

367
seconds

15–3600 Yes

MissedHe
artBeatCo
unt

Specifies the number of missed
heartbeat signals after which
the computer is listed as not
available.

2 1–100 Yes

MaxWaitin
gTime

Specifies the maximum time
interval a job must wait for a
resource to become available. If
the interval expires before a
resource becomes available,
the job status changes to
Resource Allocation Failure.
This value can be overridden for
each specific job by the
Maximum Resource Waiting
Time parameter defined in the
Job Brokering Definition
Console.

600
seconds

0–864000 Yes (This
applies
only to
new
submitte
d jobs.)

CheckInter
val

Specifies the minimum time
interval within which the
Resource Advisor has to wait
before re-trying to find matching
resources for a job that did not
find any resource in the
previous time slot.

60 seconds 5–3600 Yes

 Chapter 7. Performance optimization 287

The Tivoli Dynamic Workload Broker V1.2 introduces new parameters for
configuring the Resource Advisor, as shown in Table 7-4.

By default, these parameters are not defined in the ResourceAdvisorConfig
properties file, but you can add new rows to it in order set new values.

Table 7-4 Resource Advisor properties - additional properties for TDWB 1.2

TimeSlotL
ength

Specifies the timeslot interval
within which the Resource
Advisor decides which
resources to allocate to each
job. Jobs submitted after this
interval has expired are
considered in a new timeslot.

15 seconds 1–600 Yes

NotifyTime
Interval

Specifies the interval within
which the Resource Advisor
tries to send notifications on the
job status to the Job Dispatcher.

15 seconds 5–600 Yes

MaxNotific
ationCount

Specifies the maximum number
of attempts for the Resource
Advisor to send notifications to
the Job Dispatcher.

100 1–1200 Yes

Property Definition Default Range Run-
time
change

MaxAllocsInCa
che

Specifies the maximum
number of allocations
data the Resource
Advisor can hold. When
this limit is reached then
the Resource Advisor
refuses any allocation
request from Job
Dispatcher.

5000 1–
1,000,
000

Yes

Property Definition Default Range or
format

Run-time
change

288 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

7.3 Performance configuration parameters on the agent

There are also a number of parameters on the Tivoli Dynamic Workload Broker
agents that can affect the performance.

7.3.1 ResourceAdvisorAgentConfig

The ResourceAdvisorAgentConfig defines the behavior of the agent in relation to
the discovering of the resources on the agent and the notification to the server.

MaxAllocsPerTi
meSlot

Specifies the maximum
number of allocations
the Resource Advisor
can process every time
the timeslot expires. If
there are more requests
in the request queue the
Resource Advisor only
picks up first
MaxAllocsPerTimeSlot
requests. The other
requests will be
processed when the
timeslot expires again.

100 1–
1,000,
000

YES

MaxExtension
Count

Specifies the number of
times the Resource
Advisor can extend the
resource reservation.
The default -1 means
infinite, that is, a
resource reserved
through allocation
remains reserved to a
given job until it
terminates. Setting a
different value causes
the Resource Advisor to
extend the resource
reservation on
consumable resources
only for the number of
timeslots specified.

-1 -1–10,
000

YES

 Chapter 7. Performance optimization 289

The restart of the agent is needed to make the changes effective. Table 7-5
shows the Agent Resource Advisor properties parameters on the agents.

Table 7-5 Agent Resource Advisor properties

7.3.2 JobExecutionAgentConfig

The JobExecutionAgentConfig defines the behavior of the agent in relation to
jobs execution.

The properties must be an integer number. If not, the default value will be taken.
The jobexecutionagent service of the agent command-line interface allows you to
modify these parameters in the JobExecutionAgentConfig.properties file. In the
agent_installation_directory/ep/runtime/agent directory run the following
command:

./agentcli.sh jobexecutionagent setproperty propertyname propertyvalue

Property Definition Default

UIMOperatingSyst
emScanner.ScanI
ntervalSecs

Specifies how often an operating system
scanner is performed on the agent.

30 seconds

UIMComputerSyst
emScanner.ScanI
ntervalSecs

Specifies how often a computer system
scanner is performed on the agent

30 seconds

UIMFileSystemSc
anner.ScanInterva
lSecs

Specifies how often a file system scanner
is performed on the agent.

30 seconds

UIMNetworkScan
ner.ScanIntervalS
ecs

Specifies how often a network system
scanner is performed on the agent.

30 seconds

ScanOnNotification Specifies that the scan must be
performed immediately before sending
the scan data. Supported values are true
and false.

false

NotifyToResourceA
dvisorIntervalSecs

Specifies the time interval within which
the Workload Agent sends a status
update on resources to the Resource
Advisor. The status update is also used
as a heartbeat signal. When this interval
expires and no signal is received, the
computer is listed as not available.

120 seconds

290 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Table 7-6 shows the job execution properties parameters on the agents.

Table 7-6 Job execution properties

7.4 Best practices

In the previous sections we defined what parametes can be changed in order to
tune the Tivoli Dynamic Workload Broker. Now we describe how these
parameters can influence the performance of the product and what are some of
the best practices to follow when changing them.

7.4.1 Server

Table 7-7 discusses best practices for the server parameters.

Table 7-7 Server - Best practices

Property Definition Default

workmanager.maxjobs Specifies the maximum number of jobs
that can be run concurrently on a
resource. When this limit is exceeded,
any subsequent jobs assigned to the
resource remain in Submitted to Agent
status.

40

notifier.maxretries Specifies the maximum number of
attempts for the Workload Agent to notify
clients.

480

notifier.retryinterval Specifies the Workload Agent retry
interval between each notification
attempt. The time unit is seconds.

60 seconds

FailQInterval Decreasing this number causes the Job Dispatcher to recieve
failing situations quicker, but it would require a lot of CPU
resources if the jobs usually take long to recover, because the Job
Dispatcher will try multiple times to recover the jobs. If the a job
requires a long time to run, then it is probably better to set this
parameter to higher values than the default ones. One example
could be a Tivoli Workload Scheduler agent dealing with a new
symphony file. If there are no such kinds of jobs, or they have very
little impact on the Tivoli Dynamic Workload Broker, this parameter
can be set to lower values.

 Chapter 7. Performance optimization 291

MaxNotificationC
ount

The same considerations made for the FailQInterval are also
applicable for this parameter, as this should be increased as longer
downtimes are expected for jobs requiring long time to terminate.

MoveHistoryData
FrequencyInMins

Increasing this number causes the Job Dispatcher to check less
frequently for the job to be moved. The consequence of this is that
the volume of the jobs in the Job Repository may be higher and the
queries may take more time to complete. Tivoli Dynamic Workload
Broker servers with high job throughput may require lower values,
as low throughputs may allow higher values. In any case, this
parameter does not influence the performance for a great extend.

SuccessfulJobsM
axAge

The considerations made for the
MoveHistoryDataFrequencyInMins are also applicable for this
parameter.

UnsuccessfulJob
sMaxAge

The considerations made for the
MoveHistoryDataFrequencyInMins are also applicable for this
parameter.

ArchivedJobsMax
Age

The considerations made for the
MoveHistoryDataFrequencyInMins are also applicable for this
parameter.

MaxProcessingW
orkers

Its total value (MaxProcessingWorkers * 2 + 20) should not exceed
the maximum number of threads of the Job Dispatcher work
manager (the default is set to 50 and can be increased) and the
JDBC maximum connections (default set to 100). To check or
modify the maximum number of threads of the Job Dispatcher work
manager, open the Websphere Application Server administrative
console and go to Resources → Asynchronous beans → Work
managers → JobDispatcherWorkManager. To check or modify
the maximum number of JDBC connections, open the
administrative console and go to Resources → JDBC
providers → ITDWBProvider → Data sources →
ITDWBDataSource → Connection pools.

HistoryDataChun
k

This parameter is meant to limit the lock escalation in the Job
repository when old job data archiving occurs. Consider using
lower values if lock escalation occurs and the Tivoli Dynamic
Workload Broker server fails in archiving jobs.

292 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

RaaHeartBeatInt
erval

It is advisable to set this parameter to a value higher than the
default on a slow network. However, defining a higher value might
delay the update on availability status of computer systems. On the
other hand, decreasing this number together with the time interval
used by the agent to send the heartbeat signal to the Resource
Advisor (defined by the parameter
NotifyToResourceAdvisorIntervalSecs in the
ResourceAdvisorAgentConfig.properties file on the agents) might
generate network traffic because updates occur too frequently.
Also, the Tivoli Dynamic Workload Broker server will use more
CPU to update all the cached data. As a general recommendation,
the value defined with this parameter must be consistent with the
NotifyToResourceAdvisorIntervalSecs.

MissedHeartBeat
Count

On a slow or intermittent network, we recommend setting this
parameter to a value higher than the default.

MaxWaitingTime If you set this parameter to -1, no waiting interval is applied for the
jobs. If you set this parameter to 0, the Resource Advisor tries just
once to find the matching resources, and if it does not find any
resource, then the job goes to ALLOCATION FAILED state. If you
increase this value, by default all submitted jobs remain in waiting
for a longer time and the Resource Advisor will retry to find
matching resources at least every CheckInterval.

CheckInterval The value defined in this parameter must be consistent with the
MaxWaitingTime.

TimeSlotLength Setting this parameter to a higher value causes the Resource
Advisor evaluations to better favor higher priority jobs versus lower
priority ones, when some resource is contended (through
allocation) by all them. On the other hand, the job resource
matching processing takes longer on average and the resource
state updates from the agents could be slowed, especially if there
is a high server job throughput. Setting this parameter to a lower
value causes the Resource Advisor to process the resource
matching faster and, in case of many agents with frequent updates,
to update the resource repository without delay. If job requirements
match many resources, then lower values of this parameter favor a
better load balancing. If the major part of the jobs has allocations
then it is not indicated to lower this value, as the allocation
evaluation requires much processing.

NotifyTimeInterva
l

It is advisable to set this parameter to be consistent with the
notifier.maxretries parameter defined by in the
ResourceAdvisorAgentConfig.properties file on agents.

MaxNotificationC
ount

It is advisable to set this parameter to be consistent with the
notifier.retryinterval parameter defined by in the
ResourceAdvisorAgentConfig.properties file on agents.

 Chapter 7. Performance optimization 293

7.4.2 Agent

Table 7-8 discusses best practices for the agent parameters.

Table 7-8 Agent - Best practices

MaxAllocsInCache Increasing this number causes the Resource Advisor processing a
potential higher number of resource reservation data every time
slot with consequent processor time usage. This allows the
processing of a higher number of jobs. More limited impacts on
processing may be obtained if jobs submitted do not use
allocations. Decreasing this number causes the Resource Advisor
processing a lower number of resource reservation data every time
slot, resulting in less processor usage and slower job submission
processing.

MaxAllocsPerTim
eSlot

Increasing this number causes the Resource Advisor processing a
higher number of resource allocation requests data every time slot
with consequent processor time usage. Of course, this allows the
processing of a higher number of jobs per time slot. Decreasing
this number causes the Resource Advisor processing a lower
number of resource allocation requests data for each time slot,
resulting in a smoother processor usage and slower job
submission processing. Moreover, this setting frees-up the
Resource Advisor from continuously working on allocations and
lets available more time to process resource status update from
agents.

MaxExtensionCo
unt

Setting a different value from default (-1) causes the Resource
Advisor to extend the resource reservation on consumable
resources only for the number of time-slot specified. The effect of
this setting is to cause over-allocation in the sense that two or more
jobs requesting the same consumable resource can get executed
in the same time, even if there is no availability of the requested
resource. Nevertheless this allows to free-up resources after a
given time letting other jobs to run.

UIMOperatingSy
stemScanner.Sca
nIntervalSecs

Increasing this number can improve the performances but can
cause the agent to discover changes on the operating system with
delay. It is advisable to not set this parameter with a too low value.

UIMComputerSy
stemScanner.Sca
nIntervalSecs

Increasing this number can improve the performances but can
cause the agent to discover changes on the computer system with
delay. It is advisable to not set this parameter with a too low value.

UIMFileSystemS
canner.ScanInter
valSecs

Increasing this number can improve the performances but can
cause the agent to discover changes on the file system with delay.
It is advisable to not set this parameter with a too low value.

294 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

7.4.3 A simple scenario for this book

As part of this book, wee run some simple tests to verify how modifying some of
the configuration parameters can change the performance of the Tivoli Dynamic
Workload Broker server. The environment we used is the following:

� Server: Windows 2003, 4 GB RAM
� Five Agents: three agents Windows, two agents Linux

UIMNetworkScan
ner.ScanInterval
Secs

Increasing this number can improve the performances but can
cause the agent to discover changes on the network system with
delay. It is advisable to not set this parameter with a too low value.

ScanOnNotificati
on

Setting this value to true means that all the scans are performed at
each NotifyToResourceAdvisorIntervalSecs interval time, just
before sending the notification to the Resource Advisor. All the
previous scanning interval parameters will be ignored.

NotifyToResourc
eAdvisorIntervalS
ecs

On a slow network, it is advisable to set this parameter to a higher
value. The value defined in this parameter should be consistent
with the RaaHeartBeatInterval parameter defined in the
ResourceAdvisorConfig.properties file on the IBM Tivoli Dynamic
Workload Broker server, which defines the time interval within
which the Resource Advisor expects a heartbeat signal from the
agent.

workmanager.ma
xjobs

It is recommended to decrease this number if the agent is running
on a slow system to limit consumption of resources. Anyway, if the
value is too low, an higher number of jobs can remain in to a
SUBMITTED state causing an higher number of allocated
resources that fill the cache on the Resource Advisor, decreasing
performance on server.

notifier.maxretrie
s

Increasing this value might slightly increase network traffic, but this
is suggested if the IBM Tivoli Dynamic Workload Broker server
runs into a cluster environment. If, for any reason, primary server
can not be reached by the agents, an higher value for this
parameter allows to the backup server to be notified on jobs’ status
if it become available in a time shorter then notifier.maxretries *
notifier.retryinterval (default is 8 hours). If this time interval is
exceeded, the jobs will remain in RUNNING state, up the agents
are not restarted.

notifier.retryinterv
al

Increasing this value might slow the updating of information on the
server but the same considerations for notifier.maretries are valid
also for this parameter.

 Chapter 7. Performance optimization 295

Three jobs were defined, one running only on Windows platforms, one on Linux
and one on AIX.

Jobs have been submitted continuously for 5 minutes (at a rate of about 100 jobs
per minute) through the command-line interface. After the 5 minutes of jobs’
submission, Resource Advisor continued to work for matching resources for the
AIX job, which was still in the WAITING FOR ALLOCATION status.

The percentage of the CPU utilization by the java process running the
WebSphere application Server has been measured.

The following parameters on the Resource Advisor have been changed:

� TimeSlotLenght (default 15 sec, 1 sec, 600 sec)
� MaxWaitingTime (default 600 sec, 0 sec, 70 sec)
� CheckInterval (default 60 sec, 1 sec, 200 sec)

Figure 7-1 shows the results for the scenario that tests the TimeSlotLenght.

Figure 7-1 Test on TimeSlotLength

When we set a very high value for the TimeSlotChange (for example, 600 sec),
we experienced how CPU utilization is effected during the first part of the test,
the first 5 minutes, during the jobs’ submission. The CPU utilization went down
from about 35% (default value) to about %15. This is because a very high value
for the TimeSlotChange causes the Resource Advisor that performs the resource
matching and allocate resources, not to work for longer periods. The CPU was so

296 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

occupied only by the Job Dispatcher. The side effect was that, as the
TimeSlotChange interval time elapsed, there has been a spike of the CPU
utilization due to the Resource Advisor that had to process all the resource
allocation requests that were not resolved before. After the spike, the CPU
utilization kept to be quite high (about 25%) because the Job Dispatcher
continued to process jobs and finally completed them.

Generally, performance depends how the jobs have been defined. The more the
submitted jobs have requirements and allocations and the more the Resource
Advisor needs processing. Also the number of the agents is a key factor on
performance. When there are more agents are in the environment, the Resource
Advisor needs more processing for the resource allocation.

The other two tests did not give us significant results. Modifying the values for the
MaxWaitingTime and CheckInterval, as done in the tests, did not change
performance on the server significantly. The curves obtained are not very
different from the curve TimeSlotChange = 15 in Figure 7-1 on page 296.

7.5 Scalability tests

Some scalability tests have been executed on Tivoli Dynamic Workload Broker
V1.1. The results are relative to a specific scenario and to a specific environment,
and that there is no guarantee that you will obtain the same results in your
environment because many factors can influence performance, as well as the
network bandwidth and, most importantly the type of jobs you are running on the
agents.

Our environment was:

� Server: AIX 5.3, 4 CPUs, 4 GB RAM, 4 GB for swap

� Agent Manager: running on the same WebSphere Application Server hosting
the Tivoli Dynamic Workload Broker server.

� DB2: V8.2 running on the same machine where the Tivoli Dynamic Workload
Broker server runs. Two separated disks dedicated to the Tivoli Dynamic
Workload Broker server and Agent Manager databases.

� WebSphere Application Server: V6.0.2.11 with heap size to 2 GB.

600 agents connected to the server.

A Tivoli Dynamic Workload Scheduler V8.3 environment has been used to run
the test. A variable number of simple jobs (running ping command) combined
into a single job stream has been submitted to a Tivoli Dynamic Workload agent
running on a Tivoli Dynamic Workload Broker server. This routed the jobs to the

 Chapter 7. Performance optimization 297

Tivoli Dynamic Workload Broker agents. The number of jobs in the job stream
has been varied opportunelly.

It has been verified that the job throughput can reach and exceed about 50 jobs
for minute (which means about 72,000 jobs per day).

7.5.1 Scenario for the Tivoli Dynamic Workload Broker V1.2

Some other tests has been executed in to an environment upgraded to version
V1.2. The new release provides some enhancement of performances. Here is
the scenario.

� Server: RedHat Enterperise Linux AS 4, 4CPUs, 4 GB RAM.

� Agent Manager: running on the same WebSphere Application Server hosting
the Tivoli Dynamic Workload Broker server.

� DB2: v9.1 server running on the a remote machine, RedHat Enterperise Linux
AS 4, 4CPUs, 2 GB RAM.

� WebSphere Application Server: V6.1.5.

5 to 480 agents connected to the server.

298 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

As for the test for Tivoli Dynamic Workload Broker V1.1, a Tivoli Dynamic
Workload Schduler V8.3 environment has been used to run the test. Very simple
jobs (running the ls command) have been submitted to a Tivoli Dynamic
Workload agent running on the Tivoli Dynamic Workload Broker server with a
variable rate (from 50 to 200 jobs per minute). Figure 7-2 summarizes the results.

Figure 7-2 Test performance results for ITDWB 1.2

The throughput has been determined on how many of the submitted jobs
complete in to a successful state. With a rate of 100 jobs per minute (means
about 140,000 jobs for day) almost all jobs have been successful if the number of
agents is about 100. With lower rate (about 50 jobs per minute, 72,000 per day)
all the jobs complete even with a larger number of agents.

 Chapter 7. Performance optimization 299

300 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Chapter 8. Integration with other IBM
Tivoli products

Tivoli Dynamic Workload Broker is a powerful tool for distributing jobs across
available resources. It has many useful built-in capabilities for managing the
workload in production. However, additional efficiency can be achieved by
integrating Tivoli Dynamic Workload Broker with other IBM Tivoli Products.

The idea of IBM Tivoli software family is based on the scalability and
interoperability of IBM Tivoli products. Integrated IBM Tivoli products working
together offer a comprehensive end-to-end solution across the whole IT
environment.

In this chapter we describe the mechanism of how Tivoli Dynamic Workload
Broker can be integrated with other Tivoli products and thus extend its
functionality.

� “Our Tivoli Dynamic Workload Broker integration environment” on page 302

� “Integration with IBM Tivoli Change and Configuration Management Database
(CCMDB)” on page 302

� “Integration with IBM Tivoli Provisioning Manager” on page 313

� “Integration with IBM Tivoli Monitoring” on page 325

8

© Copyright IBM Corp. 2007. All rights reserved. 301

8.1 Our Tivoli Dynamic Workload Broker integration
environment

Table 8-1 shows the lab environment that we used for the Tivoli Dynamic
Workload Broker integration scenarios. The following sections give you details of
these integration scenarios.

Table 8-1 Our lab environment of the Tivoli Dynamic Workload Broker integration scenarios

The following sections give you details of these integration scenarios.

8.2 Integration with IBM Tivoli Change and
Configuration Management Database (CCMDB)

As technology becomes intertwined with day-to-day business functions,
technology-centric IT management practices are evolving into a more
business-focused management of IT services. The IBM IT Service Management
strategy enables you to align business insight and innovative technology.

At the core of the IBM IT Service Management strategy is IBM Tivoli Change and
Configuration Management Database (Tivoli Change and Configuration
Management Database, or CCMDB).

Tivoli Change and Configuration Management Database has native discovery
capabilities that an organization can use to obtain a detailed understanding of its

Host name OS Software installed

athens Windows 2003 � Tivoli Dynamic Workload Broker server V1.1

� Tivoli Workload Scheduler V8.3

� Tivoli Entperise Portal V6.1

� Tivoli Monitoring V6.1

paris AIX V5.3 Tivoli Provisioning Manager V5.1

zurich Suse Linux
V9.0

Tivoli Change and Configuration Management Database V1.1
server

nice Windows 2003 Tivoli Dynamic Workload Broker V1.1 Windows agent

oslo Suse Linux
V9.0

Tivoli Dynamic Workload Broker V1.1 Linux agent

cairo Windows 2003 Tivoli Dynamic Workload Broker V1.1 Windows agent

302 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

supporting infrastructure, including down to layer-2 network devices, storage
devices, cross-tier dependencies, and run-time configuration. Tivoli Change and
Configuration Management Database provides detailed maps of business
applications and their relationships.

Figure 8-1 Tivoli Change and Configuration Management Database

Tivoli Change and Configuration Management Database can automatically
discover the following entities in an infrastructure environment:

� Network
� System
� Application
� Infrastructure service components

Within Tivoli Dynamic Workload Broker you can define workstations in your
environment as computers or logical resources. A computer is a workstation
categorized on the basis of its hardware characteristics. A logical resource is a
workstation that can be used to represent applications, groups, licenses, servers
and any feature that may be applied to computer system or to other logical
resources.

The integration with Tivoli Change and Configuration Management Database
enhances the process of creating logical resources by importing resources
stored in the Tivoli Change and Configuration Management Database.

 Chapter 8. Integration with other IBM Tivoli products 303

Figure 8-2 shows the machines discovered by our Tivoli Change and
Configuration Management Database installation. Note that barcelona, a Linux
machine, is one of the machines discovered by the Tivoli Change and
Configuration Management Database. We later use this information in our Tivoli
Dynamic Workload Broker and Tivoli Change and Configuration Management
Database scenario.

Figure 8-2 Systems discovered by Tivoli Change and Configuration Management Database

Note: Tivoli Application Dependency Discovery (TADDM) can also be used in
this scenario. Tivoli Application Dependency Discovery is the discovery engine
of Tivoli Change and Configuration Management Database and is also
available as a standalone product. For the purposes of Tivoli Dynamic
Workload Broker, you can use either of the products.

304 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

8.2.1 Tivoli Change and Configuration Management configuration

Configuration information for the connection to the Tivoli Change and
Configuration Management Database is stored in the
TDWB_server_install_directory/config/CCMDBConfig.properties file. This file is
created during the installation of the CCMDB enablement for Tivoli Dynamic
Workload Broker.

� CCMDB.user

Specifies the user ID to connect to Tivoli Change and Configuration
Management Database.

� CCMDB.softwareElements

A list of software elements to be imported. By default all software elements of
the AppServer type will be processed. Only elements from the AppServer can
be processed.

� CMDBAddress.port

Port used to communicate with Tivoli Configuration Management Database.
The default value is 9530.

� CCMDB.pwd

Stored encrypted copy of user ID set in CCMDB.user. This value is filled in
with an encrypted value after installation and if command line is invoked
passing password.

� CCMDB.lastUpdate

This value is updated with the time stamp of the last successful import.
Anytime a full import is desired this needs to be reset to zero, otherwise only
incremental changes from the datestamp are imported.

� CMDBAddress.host

The Tivoli Change and Configuration Management Database server address.
This can be host name or TCP address.

8.2.2 Integration steps

Installing the enablement to support integration with Tivoli Change and
Configuration Management Database can be performed after installation of the

Note: If a resource that has been imported is manually deleted from Tivoli
Dynamic Workload Broker, the only way to reacquire this resource is to
reset CCMDB.lastUpdate to zero and execute the ccmdbdataimport
command.

 Chapter 8. Integration with other IBM Tivoli products 305

Tivoli Dynamic Workload Broker server, or can be installed with the initial
installation of the Tivoli Dynamic Workload Broker server.

Once the Tivoli Change and Configuration Management Database enablement is
installed, IBM Tivoli Dynamic Workload Broker is ready to import logical resource
information from the Tivoli Change and Configuration Management Database.
These logical resources are now available to be used for Tivoli Dynamic
Workload Broker jobs.

Installing CCMDB enablement
To enable Tivoli Dynamic Workload Broker 1.1 for Tivoli Provisioning Manager
enablement:

1. Insert CD 1, Tivoli Dynamic Workload Broker 1.1

2. Select the option to install the Tivoli Dynamic Workload Broker server.

3. Select the Custom option. See Figure 8-3.

Figure 8-3 Install the Tivoli Change and Configuration Manager Database enablement

306 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

4. Select IBM CCMDB enablement, as shown in Figure 8-4 on page 307.

Figure 8-4 Install the Tivoli Change and Configuration Management Database

 Chapter 8. Integration with other IBM Tivoli products 307

5. Provide the parameters for the Tivoli Change and Configuration Management
Database, as shown in Figure 8-5. For a description of these parameters see
“Tivoli Provisioning Manager configuration” on page 314.

Figure 8-5 Tivoli Change and Configuration Management Database configuration.

308 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Import resources from CCMDB
To initiate the import of resources, execute the ccmdbdataimport command,
which is located in the installation_directory/bin. This command must be
executed whenever changes to Tivoli Change and Configuration Database take
place, in order to keep Tivoli Dynamic Workload Broker in sync. This command
can be scheduled as a Tivoli Workload Scheduler daily job. Figure 8-6 shows the
execution output of the ccmdbdataimport command.

Figure 8-6 ccmdbdataimport execution output

 Chapter 8. Integration with other IBM Tivoli products 309

In Figure 8-7 the output shows that only they systems that are executing the
Tivoli Dynamic Workload Broker agent are checked for updates within the Tivoli
Change and Configuration Management Database. At the time of execution only
four systems had the Tivoli Dynamic Workload Broker agent executing: athens,
barcelona, nice, and oslo.

Previous to executing the ccmdbdataimport command, the Logical Resource
screen shows the following (Figure 8-7).

Figure 8-7 Logical Resource screen before executing the ccmdbdataimport command

After executing the ccmdbdataimport command, the Logical Resource screen
shows the following (Figure 8-8).

Figure 8-8 Logical Resource screen after executing the ccmdbdataimport command

310 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

A logical resource is created for each discovered Change and Configuration
Management Database resource. A relationship of the Contains type is defined
between the new logical resource and the IBM Tivoli Dynamic Workload Broker
computer system defined in the RunsOn column in the Change and
Configuration Management Database. See Table 8-2.

Table 8-2 Mapping between Tivoli Dynamic Workload Broker and Tivoli Change and Tivoli Change and
Configuration Management Database attributes.

Tivoli Dynamic Workload Broker attribute Change and Configuration Management
Database attribute

Display name Display name or Label if Display Name N/A

Name GUID

Administrative status Admin State

Change and Configuration Management
Database subtype

Collation® Type

Creator name CDMSource

Owner name “CCMDB”

Quantity 1

Note: The resource matching is performed based on the fully qualified host
name of the computer on which they run. Therefore the matching can be
performed only for those resources running on Tivoli Dynamic Workload
broker computer systems that have a fully qualified host name matching the
host name listed in the RunsOn column in Tivoli Change and Configuration
Management Database. Reviewing ccmdbdataimport output shows that only
the system barcelona was fully qualified and thus the only system to import a
logical resource.

 Chapter 8. Integration with other IBM Tivoli products 311

Review the integration flow depicted in Figure 8-9.

Figure 8-9 Tivoli Dynamic Workload Broker and Tivoli Change and Configuration Management Database
integration architecture

The flow is:

1. Tivoli Dynamic Workload Broker discovers target resources.

2. Resources are imported from the Tivoli Change and Configuration
Management Database and corresponding Resource Repository resources
are associated to the target resource.

3. The job is submitted specifying a resource requirement based on Tivoli
Change and Configuration Management Database resources.

4. The Tivoli Dynamic Workload Broker submits the job to the target resource
with the requested Tivoli Change and Configuration Management Database
resources.

For troubleshooting the Tivoli Change and Configuration Management Database
integration refer to 10.6, “Troubleshooting the integration with CCMDB” on
page 513.

312 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

8.3 Integration with IBM Tivoli Provisioning Manager

IBM Tivoli Provisioning Manager (Tivoli Provisioning Manager) is an automated
resource management solution for corporate and Internet data centers. Through
orchestrated provisioning, it provides the ability to manage the IT environment in
real time, according to defined business policies, to achieve desired business
goals.

Integrating Tivoli Dynamic Workload Broker with Tivoli Provisioning Manager
provides the capability of launching Tivoli Provisioning Manager workflows as
part of recovery actions to be performed when the resources required by a job
are not available. Using the Job Brokering Definition Console, specify the name
of a Tivoli Provisioning Manager workflow to be run as the recovery action in the
Scheduling pane. The recovery action is automatically started when a job
submission times out due to unavailable resources.

Figure 8-10 shows the architecture of Tivoli Provisioning Manager integration.

Figure 8-10 Tivoli Provisioning Manager integration

 Chapter 8. Integration with other IBM Tivoli products 313

8.3.1 Tivoli Provisioning Manager configuration

Configuration information for the connection to the Tivoli Provisioning Manager
server is stored in the
TDWB_server_install_directory/config/TPMConfig.properties file. This file is
created during the installation of the Tivoli Provisioning Manager enablement for
the Tivoli Dynamic Workload Broker.

Parameters in this file can be overridden in a single job when creating the job
with the Job Brokering Definition Console.

The following parameters are available in the TPMConfig.properties file:

� TPMAddress.hostname

Specifies the host name of the Tivoli Provisioning Manager server to be used
when running the recovery action. Use a fully qualified host name.

� TPMAddress.port

Specifies the port number of the Tivoli Provisioning Manager server to be
used when running the recovery action. The Tivoli Provisioning Manager
administrator must supply this information. The default is 8777.

� TPM.user

Specifies the Tivoli Provisioning Manager user name of a user with the
authority to run workflows. The default is tioappadmin.

� TPM.pwd

Specifies the password for the Tivoli Provisioning Manager user to be used
when running a Tivoli Provisioning Manager workflow.

8.3.2 Integration steps

Installing the enablement to support integration with Tivoli Provisioning Manager
can be performed post install of the Tivoli Dynamic Workload Broker server, or
can be installed with the initial installation of the Tivoli Dynamic Workload Broker
server.

Once the Tivoli Provisioning Manager enablement is installed IBM Tivoli Dynamic
Workload Broker is ready to execute Tivoli Provisioning Manager workflows.

Note: For more information about Tivoli Provisioning Manager refer to
Deployment Guide Series: IBM Tivoli Provisioning Manager Version 5.1,
SG24-7261.

314 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

The following steps are required for Tivoli Dynamic Workload Broker jobs to
execute Tivoli Provisioning Manager Workflows.

1. Install Tivoli Provisioning Manager enablement on the IBM Tivoli Dynamic
Workload Broker server. This is on the IBM Tivoli Dynamic Workload Broker
CD (CD_1).

2. Define a Tivoli Provisioning Manager Workflow. This step is usually performed
by the Tivoli Provisioning Manager administrator. In our example the Tivoli
Provisioning Manager workflow installs the IBM Tivoli Dynamic Workload
Broker agent on a Linux system.

3. Create or modify an existing IBM Tivoli Dynamic Workload Broker job
definition using the Job Broker Definition Console, which specifies the Tivoli
Provisioning Manager workflow as the recovery action for the job. This is done
under the Scheduling pane of the job definition.

Install the Tivoli Provisioning Manager enablement
Do the following to enable Tivoli Dynamic Workload Broker 1.1 for Tivoli
Provisioning Manager enablement.

1. Insert CD 1, Tivoli Dynamic Workload Broker 1.1.

2. Select the option to install the Tivoli Dynamic Workload Broker server.

 Chapter 8. Integration with other IBM Tivoli products 315

3. Select Custom. See Figure 8-11.

Figure 8-11 Install the Tivoli Provisioning Manager workload enablement

316 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

4. Select IBM Tivoli Provisioning Manager enablement, as shown in
Figure 8-12.

Figure 8-12 Install the Tivoli Provisioning Manager workload enablement

 Chapter 8. Integration with other IBM Tivoli products 317

5. Provide the parameters for IBM Tivoli Provisioning Manager enablement, as
shown in Figure 8-13. For a description of these parameters, see “Tivoli
Provisioning Manager configuration” on page 314.

Figure 8-13 IBM Tivoli Provisioning Manager configuration

Create a Tivoli Provisioning Manager workflow
The next step is to develop a workflow in Tivoli Provisioning Manager that will
provision the resources required by Tivoli Workload Broker jobs. A workflow in
Tivoli Provisioning Manager is a simple program with a number of constructs that
is used to manage an environment. In this example the workflow simply installs a
Tivoli Dynamic Workload agent on a Linux system, oslo.

If you are not familiar with creating Tivoli Provisioning Manager workflows, you
can refer to Developing Workflows and Automation Packages for IBM Tivoli
Intelligent Orchestrator V3.1, SG24-6057.

318 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Figure 8-14 Tivoli Provisioning Manager workflow

Note: Tivoli Intelligent Orchestrator is a product that automatically triggers the
provisioning, configuration, and deployment performed by Tivoli Provisioning
Manager, which is part of the Tivoli Intelligent Orchestrator product, as well as
being a standalone product. So the discussion here regarding the Tivoli
Provisioning Manager also applies to Tivoli Intelligent Orchestrator.

 Chapter 8. Integration with other IBM Tivoli products 319

Create IBM Tivoli Dynamic Workload Broker job definition
In our example we have created a simple Tivoli Workload Broker job definition
that must be executed on a Linux system. Figure 8-15 shows the Tivoli Dynamic
Workload Broker job that was created. The workflow is defined under the
Scheduling tab.

Figure 8-15 Tivoli Workload Broker job definition

Example 8-1 .jsdl definition for this job

<?xml version="1.0" encoding="UTF-8"?>
<jsdl:jobDefinition xmi:version="2.0"
xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl"
xmlns:jsdle="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdle"
xmlns:jsdltpm="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdltpm"
xsi:schemaLocation="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdltp
m TPMAction.xsd
http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl JSDL.xsd
http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdle

320 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

JSDL-Native.xsd" description="dirlinux" name="tsttpm">
 <jsdl:application name="executable">
 <jsdle:executable>
 <jsdle:arguments>
 <jsdle:value>-l</jsdle:value>
 <jsdle:value>/</jsdle:value>
 </jsdle:arguments>
 <jsdle:script>/bin/ls</jsdle:script>
 </jsdle:executable>
 </jsdl:application>
 <jsdl:resources>
 <jsdl:candidateOperatingSystems>
 <jsdl:operatingSystem type="LINUX"/>
 </jsdl:candidateOperatingSystems>
 </jsdl:resources>
 <jsdl:scheduling>
 <jsdl:recoveryActions>
 <jsdl:action additionalTimeOnCompletion="P0Y0M0DT0H5M0S"
maximumExecutionTime="P0Y0M0DT0H10M0S"
name="tpmaction">
 <jsdltpm:tpmaction workFlow="installTWBAgent">
 <jsdltpm:parameters>
 <jsdltpm:parameter name="deviceID">2481</jsdltpm:parameter>
 </jsdltpm:parameters>
 <jsdltpm:credential>
 <jsdl:userName>tioadmin</jsdl:userName>
 <jsdl:password>object00</jsdl:password>
 </jsdltpm:credential>
 <jsdltpm:tpmaddress host="paris.itsc.austin.ibm.com"
port="8777"/>
 </jsdltpm:tpmaction>
 </jsdl:action>
 </jsdl:recoveryActions>
<jsdl:maximumResourceWaitingTime>P0Y0M0DT0H0S</jsdl:maximumResourceWait
ingTime>
 <jsdl:estimatedDuration>P0Y0M0DT0H0S</jsdl:estimatedDuration>
 <jsdl:priority>0</jsdl:priority>
 </jsdl:scheduling>
</jsdl:jobDefinition>

 Chapter 8. Integration with other IBM Tivoli products 321

Take the existing Linux Agent offline
We test the Tivoli Provisioning Manager integration by first taking the existing
Linux Agent offline, as shown in Figure 8-16.

Figure 8-16 Take the existing Linux Agent offline

322 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Submit the test job that requires provisioning of new resource
Note that the job will be waiting for resources, as shown in Figure 8-17. After the
time out is reached for the job, the recovery action is initiated, and Tivoli
Provisioning Manager executes its workflow, as shown in Figure 8-18 on
page 324. Once the Tivoli Provisioning Manager workflow has executed, the job
runs on the newly added Linux system, oslo, as shown in Figure 8-19 on
page 324.

Figure 8-17 Job waiting for resources

 Chapter 8. Integration with other IBM Tivoli products 323

Figure 8-18 Tivoli Provisioning Manager workflow execution log

Figure 8-19 Job runs successfully on oslo

324 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

8.4 Integration with IBM Tivoli Monitoring

Monitoring the enterprise is the key point for meeting strict SLA requirements.
Availability of servers, databases, and various applications, their response times,
various logs, and other properties are analyzed and correlated in centralized
monitoring solutions.

When a scheduling environment is in place, it is important for the system
operator to know what the status of the monitoring environment is and how
successful the jobs are that are being run within that environment. Did they run
okay? Did some jobs not finish in time? Have some of the jobs not started yet
because of lack of suitable free resources?

These are the important questions that can be answered only by implementing a
sophisticated monitoring solution.

The central point of IBM Tivoli Monitoring (Tivoli Monitoring) portfolio is Tivoli
Monitoring with its presentation layer, Tivoli Enterprise Portal (TEP). This section
describes how Tivoli Dynamic Workload Broker and Tivoli Monitoring can be
integrated together, so that important events occurring within Tivoli Dynamic
Workload Broker can appear in Tivoli Enterprise Portal.

8.4.1 Tivoli Monitoring components and terminology

In this section we describe the Tivoli Monitoring (ITM) components. We also
explain the basic terms necessary for understanding the Tivoli Monitoring
concepts.

The Tivoli Enterprise Monitoring Server (TEMS)
The Tivoli Enterprise Monitoring Server is the central repository of data that
comes from the Tivoli Enterprise Monitoring Agents. TEMS stores the definitions
for conditions that indicate possible problems with monitored resources.

Tivoli Enterprise Portal Server (TEPS)
The Tivoli Enterprise Portal Server functions as a repository for all user data,
such as the user IDs and user access control for the monitoring data, meaning
what data each user will be able to access and how it is displayed.

 Chapter 8. Integration with other IBM Tivoli products 325

Tivoli Enterprise Portal (TEP)
The Tivoli Enterprise Portal is the presentation layer for displaying the monitoring
data and offers a consolidated view of the entire IT environment. Tivoli Enterprise
Portal is a client application that connects to the Tivoli Enterprise Portal Server.
See the example in Figure 8-20.

Figure 8-20 Tivoli Enterprise Portal interface

Tivoli Enterprise Monitoring Agent
There are several types of Tivoli Enterprise Monitoring Agents. They are
distinguished by the purpose that they were designed for:

� The Operating System Agent is an agent that resides on the monitored server.
It checks predefined values (for example, free space on disks, memory usage,
and so on) and sends these values to the Tivoli Enterprise Monitoring Server
(TEMS). Operating systems agents are provided out-of-the-box with the Tivoli
Monitoring distribution.

� The Application Agent is an agent that is dedicated to monitor specific
applications, such as Active directory, Lotus Domino® infrastructure, and so
on. Each of these agents is specially programmed for its single-usage

326 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

purpose. It uses its API of monitored applications for gathering the necessary
information.

� The Database Agent is similar to the article above. This is used for monitoring
various RDBMS engines, such as DB2, Oracle, MS SQL, and so on.

� The Universal Agent (UA) is the only multi-purpose programmable agent.
The universal agent can be configured to read data from various input
sources, such as SNMP traps, incoming TCP traffic on specified ports, text
log files, and so on. The universal agent is set up via configuration contained
in metafiles. Those metafiles carry information that specifys how the
monitored entities should be parsed. For a text file it is a pattern definition that
specifys what lines in the log files are important, and thus are sent to the
Tivoli Monitoring server. On the server side that information is displayed in the
Tivoli Enterprise Portal. A situation can then be defined to reflect the content
of incoming information. The term situation is explained next.

Figure 8-21 shows how the components of Tivoli Monitoring work together.

Figure 8-21 Tivoli Monitoring schema

 Chapter 8. Integration with other IBM Tivoli products 327

Situation
Simply said, a situation is something interesting that occurred on one or more
monitored entities. A typical example can be the situation in which free space on
a logical volume decreases below a defined threshold (for instance, less than
5%). Situations can be of various severities, depending on their importance. For
instance, a critical situation can be defined for cases when important servers are
down. On the other hand, a warning situation can describe just the state in which
one of the network adapters gets overloaded within the specified period of time.

Tivoli Monitoring comes with many out-of-box predefined situations. New
situations can be defined using the Tivoli Enterprise Portal.

Automatic corrective action
If a threshold is exceeded and a situation is generated, it signals in most cases
that something bad has occurred in the IT environment. As a response to this, a
corrective action can be fired. A corrective action can be a script or predefined
action that can be launched either on the Tivoli Monitoring server or on the
monitored server (via monitoring agent). A typical example of a corrective action
is a restart of a crashed service or process. A similar mechanism is used for
alerting when specific event details are sent via e-mails or SMS to responsible
recipients.

For more information about Tivoli Monitoring refer to Getting Started with Tivoli
Monitoring 6.1 on Distributed Environment, SG24-7143.

8.4.2 Mechanism of integration of Tivoli Dynamic Workload Broker
with Tivoli Monitoring

In this section we explain how Tivoli Dynamic Workload Broker integrates with
Tivoli Monitoring.

Note: Those who are familiar with other monitoring solutions, such as Tivoli
Enterprise Console (TEC), may know the term event. The difference between
an event and a situation is based on the fact that any data that flows to the
Tivoli Enterprise Console are called events. Data that flows to the Tivoli
Monitoring server are not situations or events. You can define a situation and
when the conditions of the situation are met, then an event is generated. Both
terms event and situation represent something interesting (in most cases
something bad) that occurred in the IT environment. Thus, from this
perspective, the term event in the Tivoli Enterprise Console and the term
situation in Tivoli Monitoring are similar.

328 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

The integration of Tivoli Dynamic Workload Broker with Tivoli Monitoring is done
by the Tivoli Monitoring Universal Agent parsing a Tivoli Dynamic Workload
Broker log file. The Universal Agent periodically looks for newly appended lines in
the Tivoli Dynamic Workload Broker log file. If such a line is found, it is analyzed
against the definitions included in Universal Agent’s metafile. If the appended line
matches one of the definitions, parsed data is sent to the Tivoli Enterprise
Management Server. They are then graphically presented in the Tivoli Enterprise
Portal.

No situation definitions or corrective actions are provided with the default
integration. However, in our scenario we demonstrate how can we create
situations and set up corrective actions on them.

Figure 8-22 shows how Tivoli Dynamic Workload Broker and Tivoli Monitoring
are integrated.

Figure 8-22 Monitoring Tivoli Dynamic Workload Broker Job states using Universal Agent

The Tivoli Dynamic Workload Broker log file contains information about states of
jobs handled by the Tivoli Dynamic Workload Broker. It does not contain any
information about the states of any Tivoli Dynamic Workload Broker component.
The out-of-box integration does not provide any tool for monitoring of health of
Tivoli Dynamic Workload Broker components.

 Chapter 8. Integration with other IBM Tivoli products 329

The out-of-box integration is performed by executing the integration script. This
script must be supplied by several parameters. All the necessary steps are
described in 8.4.3, “Pre-integration tasks” on page 330, and 8.4.4, “Integration
steps” on page 330.

8.4.3 Pre-integration tasks

In this section we describe what tasks must be done prior to performing the
integration of Tivoli Dynamic Workload Broker and Tivoli Monitoring.

The Tivoli Monitoring Universal Agent must be installed on the same machine
where the Tivoli Dynamic Workload Broker server resides. You must know the
installation directory of the Universal Agent before you launch the integration
command. If the Universal Agent is installed in its default directory, you may use
the value specified in 8.4.13, “Default values and file locations” on page 391.

Choose the path where you want Tivoli Dynamic Workload Broker to create its
log file. If you decide to override the default location, make sure that the directory
already exists on the fleshiest. If not, create it. You do not need to set up any
special access permissions for that directory because the Tivoli Dynamic
Workload Broker accesses it under the account that is used for running a
WebSphere Application Server. On both Windows and UNIX this account has full
permissions to the fleshiest.

When you are ready to select the log file path, you must prepare the list job
states that you want to write to logs and thus to be monitored by Tivoli Monitoring
Universal Agent. See “List of all possible states of Tivoli Dynamic Workload
Broker jobs” on page 392 for a list of possible job states.

8.4.4 Integration steps

In this section we explain how to integrate the Tivoli Dynamic Workload Broker
with Tivoli Monitoring so that a monitoring of job states can be achieved.

The integration is performed by launching integration script tepconfig.bat. This
script is located in the bin subdirectory of the Tivoli Dynamic Workload Broker
installation directory.

Note: All of the scenarios included in this chapter were performed in a
Windows environment. However, the steps on UNIX/Linux platforms are
similar. The different default paths and commands are listed in 8.4.13, “Default
values and file locations” on page 391.

330 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Steps performed by the integration script
The integration script performs following tasks:

� Configures Tivoli Dynamic Workload Broker so that it logs required events to
the file

� Configures the Universal Agent so that it understands the content of the Tivoli
Dynamic Workload Broker log file

� Configures the views in the Tivoli Enterprise Portal so that it is able to display
situations that originate from the Tivoli Dynamic Workload Broker
environment

Be sure that you have prepared all the necessary inputs, as stated in 8.4.3,
“Pre-integration tasks” on page 330. If you have all of the data ready, you can
start the integration.

Complete list of steps
In this section we provide the complete list of steps that must be done either on
the Tivoli Dynamic Workload Broker side or on the Tivoli Enterprise Portal side to
complete the integration.

The complete list of steps is included below:

1. Prepare all the necessary data, as described in “Pre-integration tasks” on
page 330.

2. Source the Tivoli Dynamic Workload Broker command-line environment.

3. Issue the integration script.

4. Recycle the Tivoli Dynamic Workload Broker’s WebSphere Application server.

5. Check the log file presence.

6. Add additional settings on the Tivoli Monitoring side, as described in
“Configuring Universal Agent to accept a FILE data provider” on page 337:

– Configuring Tivoli Monitoring Universal Agent, so it can analyze text files
– Creating situations
– Setting thresholds
– Creating corrective actions

Sourcing the Tivoli Dynamic Workload Broker command-line
environment
Open a command window and go to the directory
C:\Program Files\IBM\ITDWB\server\bin and issue tdwb_env.

 Chapter 8. Integration with other IBM Tivoli products 331

Now you have set up all of the necessary environmental variables and you can
launch the integration script itself. Before launching the integration script, read
this chapter to its end. There is a difference between results that can you get
when you run the script with the default parameters, and when you specify
additional parameters. Essentially, the default integration sets only some of
possible job states to monitoring.

Launching the integration script
Remain in the directory C:\Program Files\IBM\ITDWB\server\bin and issue
tepconfig.bat -UAInstDir in the TM_installation_directory.

This command performs the integration with the default values. See 8.4.13,
“Default values and file locations” on page 391 to find out where the Tivoli
Dynamic Workload Broker log file will be created and what events will be logged
into it.

For additional troubleshooting issues related to integration of Tivoli Dynamic
Workload Broker with Tivoli Monitoring, refer to 10.3, “Troubleshooting the
integration with IBM Tivoli Monitoring” on page 504.

In most cases you would like to change the directory where the log file will be
created and you would also like to explicitly specify what job states should be
written to the log file. In these cases you will have to specify additional
parameters. The names of parameters are case sensitive.

� -eventFilePathName

Provide the full directory path for where you want the Tivoli Dynamic
Workload Broker to create the log file. Do not include the file name in the
path. The structure of the file name is fixed and cannot be overridden.

Important: On Windows systems you can receive an information such as
C:\Program' is not recognized as an internal or external command,
operable program or batch file. In Tivoli Dynamic Workload Broker 1.1,
this message is caused by an internal defect in the tepconfig.bat file. An
internal defect 30542 has been opened and this problem will be fixed in future
releases. However, if you only have Tivoli Dynamic Workload Broker V1.1, you
may fix this defect by yourself. For more information about this issue see
10.3.2, “Problems with running the integration script on Windows” on
page 505.

332 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

� -events

The value for this parameter is a list of job states that should be logged into
the log file. Values must be separated by spaces.

See the following examples of launching the integration script under various
circumstances. Do not forget to restart WebSphere after any change you perform
for the integration.

Example 8-2 shows how to launch an integration script with default values. Note
that the integration has two phases:

1. Tivoli Dynamic Workload Broker configures its TEPListener component. This
is a server component that observes the states of jobs. Based on the
TEPListener configuration, defined job states are written to the log file.

2. The Tivoli Monitoring Universal Agent is instructed to load the metafile with
monitoring definitions (messages beginning with “KUMP”).

Example 8-2 Issuing an integration script on Windows with default values

C:\Program Files\IBM\ITDWB\Server\bin>tepconfig.bat -UAInstDir
C:\IBM\ITM
Mar 3, 2007 1:24:00 AM
com.ibm.scheduling.jobdispatcher.jobstatuslistener.TEPJobStatusChangeLi
stenerProperties setEventFileName

Important: The value of “eventFilePathName” can be upredictably parsed
on a Windows platform in Tivoli Dynamic Workload Broker v.1.11.1. Some
characters preceded by a backslash (\) are wrongly interpreted as special
characters. Typical example is \t, which is treated as TAB-sign. Because of
this behavior, it is better to use double backslashes (\\) while specifying the
path. An internal defect 30643 has been opened and this problem will be
fixed in future releases. See 10.3.3, “Wrongly interpreted characters in log
file path on Windows” on page 506, for more details about this issue.

Important: When launching the integration script and specifying multiple
event types (using -events argument) together with additional parameters,
such as -metafileName or -UAApname, the integration run time is not able
to parse more than one event type. The integration script abends with ean
rror message about improperly supplied parameters. An internal defect
31336 has been opened for this problem. This error affects only Tivoli
Dynamic Workload Broker v.1.1 and will be fixed in future releases. We
include a workaround for this issue in 10.3.4, “Cannot specify multiple
event types together with parameters” on page 506.

 Chapter 8. Integration with other IBM Tivoli products 333

INFO: AWKTEP013I TEP listener has been configured to write events to
C:\Program Files\IBM\ITDWB\Server\logs
KUMPS001I Console input accepted.
KUMPS020I Import successfully completed for
C:\Program Files\IBM\ITDWB\Server\TEP\TDWB11Meta.mdl

Example 8-3 shows how the default log file path can be overridden. We also
used a custom name for the Universal Agent definitions metafile.

Example 8-3 Issuing an integration script on Windows with non-default values

C:\Program Files\IBM\ITDWB\Server\bin>tepconfig.bat -UAInstDir
C:\IBM\ITM -eventFilePathName C:\IBM\ITM\logs -metafileName
c:\IBM\itm\logs\meta.mdl

Mar 8, 2007 5:50:00 PM
com.ibm.scheduling.jobdispatcher.jobstatuslistener.TEPJobStatusChangeLi
stenerProperties setEventFileName
INFO: AWKTEP013I TEP listener has been configured to write events to
C:\IBM\logs
KUMPS001I Console input accepted.
KUMPS020I Import successfully completed for c:\IBM\itm\logs\meta.mdl

Recycling Tivoli Dynamic Workload Broker’s WebSphere
Application server
You must restart the WebSphere server for the changes to take effect. On
Windows, go to Start → Control Panel → Administrative Tools → Services,
find the appropriate IBM WebSphere Application server, and click Restart.

334 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

The name of the WebSphere where Tivoli Dynamic Workload Broker is installed
by default contains the value of nodename, which corresponds to the value of the
node parameter that was specified during the installation. Figure 8-23 shows how
we can determine the correct service to restart.

Figure 8-23 Selecting the correct WebSphere Application Server to restart

Checking the Tivoli Dynamic Workload Broker log file
existence
After you have restarted the WebSphere Application Server, the TEPListener
component is activated inside the Tivoli Dynamic Workload Broker server.
TEPListener then waits for occurrences of defined events. If any defined activities
occur when processing Tivoli Dynamic Workload Broker jobs, they are logged
into the file.

The log file can be found either in the default location or in the location that you
have specified with the -eventFilePathName parameter. The name of the file is as
follows:

TEPEVENTyyyymmddHHMM.log

 Chapter 8. Integration with other IBM Tivoli products 335

For example, a log file that has been created on the 8th of March 2007 at 6:05
p.m. is named:

TEPEVENT200703081805.log

The Tivoli Dynamic Workload Broker events are logged to this file until it reaches
its defined maximum size. After that a new log file is created with an appropriate
file name (that includes a new time stamp). The Tivoli Dynamic Workload Broker
then continues to log to the new file.

However, if a log file does not appear to be in the correct directory, even if a
configured event has already occurred within the Tivoli Dynamic Workload
Broker, something is probably wrong. See 10.3.6, “Tivoli Dynamic Workload
Broker log file not created” on page 508 for more troubleshooting techniques.

Next steps
Now you have finished the out-of-box integration. However, no views, situations,
or corrective actions are set up on the Tivoli Monitoring side. See 8.4.6,
“Configuring Universal Agent to accept a FILE data provider” on page 337 to
learn how to take additional steps that must be performed on the Tivoli
Monitoring side. Then follow the instructions described in 8.4.8, “Creating a view
on monitored data” on page 346, 8.4.9, “Setting up thresholds” on page 349,
8.4.10, “Creating situations” on page 355, and 8.4.11, “Setting up automatic
corrective action” on page 357.

8.4.5 Changing the integration criteria at a later time

It is possible to change the integration criteria after the integration has been
performed and Universal Agent has already started to observe the Tivoli
Dynamic Workload Broker log file.

The reason for a change can be one of the following:

� The log file path needs to be changed (this is usually not necessary, but
sometimes there is a requirement to place all of the log files into one specified
directory tree).

� The Tivoli Monitoring Universal Agent was reinstalled.

� The scope of monitored job states needs to be adjusted.

Note: The log file does not get created until an defined event inside the Tivoli
Dynamic Workload Broker occurs. For instance, if you launched the integration
script with the -event CANCEL parameter, only cancelled job instances are
reported to the log file. Until a job cancellation occurs, a log file does not get
created.

336 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

The integration script performs the necessary steps for you, including the refresh
of those settings that are already registered within the Universal Agent.

If you have run the integration script again and have adjusted the integration
settings you must restart the WebSphere Application Server under which Tivoli
Dynamic Workload Broker is installed. The changes take effect only after the
restart of the WebSphere Application Server.

8.4.6 Configuring Universal Agent to accept a FILE data provider

In this section we describe the necessary steps that must be taken to configure
Universal Agent to analyze text log files.

Even if the Tivoli Monitoring Universal Agent should by default accept text log
files as its data provider, we have experienced different behavior in our
scenarios. Unless we explicitly specified a FILE data provider in the configuration
of Universal Agent, we did not see any input from the Tivoli Dynamic Workload
Broker server.

If you are able to see the TDWB application in Tivoli Enterprise Portal you may
skip this section. However, you can read here how to adjust the frequency of how
often the Tivoli Dynamic Workload Broker log file should be checked by the
Universal Agent.

Important: When issuing the integration script for a second (or any further)
time and redefining the list of event types, only new required event types are
added, but the old unwanted event types are not removed. This is an internal
error. An internal defect 31351 was opened for this problem. This error affects
only Tivoli Dynamic Workload Broker v.1.1 and will be fixed in future releases.
We include a workaround for this issue in 10.3.5, “Cannot remove unwanted
event types” on page 507.

 Chapter 8. Integration with other IBM Tivoli products 337

In the opposite case (you do not see the TDWB application within the Universal
Agent branch) you must do all of the steps described in this section.

1. Launch the Manage Tivoli Monitoring Services window by clicking Start →
Programs → Tivoli Monitoring → Manage Tivoli Monitoring Services
(Figure 8-24).

Figure 8-24 Launching Manage Tivoli Monitoring Services

Important: The steps listed in this section must be performed on the system
where the Tivoli Dynamic Workload Broker is installed. We must configure the
Universal Agent, which is running on the same machine where the Tivoli
Dynamic Workload Broker log file was created.

338 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

2. In Manage Tivoli Monitoring Services right-click the agent and select
Reconfigure (Figure 8-25).

Figure 8-25 Reconfiguring Universal Agent - step 1

3. Click OK in the following two windows (Figure 8-26 and Figure 8-27 on
page 340).

Figure 8-26 Reconfiguring Universal Agent - step 2

 Chapter 8. Integration with other IBM Tivoli products 339

Figure 8-27 Reconfiguring Universal Agent - step 3

4. Click Yes in the following window, because we want to change Universal
Agent’s startup environment (Figure 8-28).

Figure 8-28 Reconfiguring Universal Agent - step 4

340 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

5. Click OK in the following window. After that the notepad window will pop-up
(Figure 8-29).

Figure 8-29 Reconfiguring Universal Agent - step 5

6. In the notepad window, search for text KUMA_STARTUP_DP (Figure 8-30).
This line tells the Universal Agent which data providers he uses when
collecting data from monitored resources.

Figure 8-30 Reconfiguring Universal Agent - step 6

By default, it contains the value ASFS, which also includes the FILE data
provider. However, in our scenario we had to explicitly specify the FILE data
provider. To do this, separate the last value of KUMA_STARTUP_DP with a
comma (,) and add FILE at the end of the line.

Search for the line containing
KUMP_DP_FILE_SWITCH_CHECK_INTERVAL. If this line is included in the

 Chapter 8. Integration with other IBM Tivoli products 341

config file, adjust it to the value you consider reasonable. The units for this
value are in seconds. If this variable is not included in the configuration file,
Universal Agent uses the default value, which is 10 minutes. This means that
Universal Agent checks for newly appended lines into log files every 10
minutes. For the purposes of job management this interval can be too long,
because usually it is good to know about failed Tivoli Dynamic Workload
Broker jobs as soon as possible.

7. At this point we should naje two essential changes to the Universal Agent
environment:

– Add the file data provider.

– Modify the file checking interval. Added (modified) lines should look like
this:

KUMA_STARTUP_DP=asfs,FILE
KUMP_DP_FILE_SWITCH_CHECK_INTERVAL=30

See Figure 8-31.

Figure 8-31 Reconfiguring Universal Agent - step 7

Tip: We recommend that the value for the variable
KUMP_DP_FILE_SWITCH_CHECK_INTERVAL is 30 seconds.

342 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

8. Close the Notepad window and save the changes made to the configuration
file (Figure 8-32).

Figure 8-32 Reconfiguring Universal Agent - step 8

9. Click Yes in the following window. This will bring you back to Manage Tivoli
Monitoring Services window (Figure 8-33).

Figure 8-33 Reconfiguring Universal Agent - step 9

 Chapter 8. Integration with other IBM Tivoli products 343

10.Start the Universal Agent that was stopped prior to us starting to edit its
configuration (Figure 8-34).

Figure 8-34 Reconfiguring Universal Agent - step 10

You have activated the FILE data provider for Universal Agent.

8.4.7 Viewing the application in the Tivoli Enterprise Portal

In previous sections we took the following actions:

� Launched an integration script, which performed these tasks:

– Configured the TEPListener component of the ITDWB enterprise
application

– Imported the definition metafile into Universal Agent

� Restarted WebSphere Application Server where the Tivoli Dynamic Workload
Broker is installed and thus activated the TEPListener component

� Configured Universal Agent to be able to use the FILE data provider

344 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

The result of these actions should be visible in the Tivoli Enterprise Portal. If you
performed these actions while the Tivoli Enterprise Portal was running, you can
see a message showing that the Navigator pane needs to be updated
(Figure 8-35).

Figure 8-35 Navigator pane - refresh pending

 Chapter 8. Integration with other IBM Tivoli products 345

After you have refreshed the Navigator pane, you can see that a new application
has been added. The name of the new application should consist of the of the
Tivoli Dynamic Workload Broker server host name and the application name
specified in the Universal Agent’s metafile. The two-digit suffix displays the
application version and modification number (initial value is 00) (Figure 8-36).

Figure 8-36 Navigator pane - refreshed, new application added

8.4.8 Creating a view on monitored data

In this section we describe how to create a view that displays the monitored data.

A view displays the monitored data in the way we choose. It may be a table, one
of many types of graphs, or whatever Tivoli Enterprise Portal offers.

For our purposes a table view is sufficient. Defining that view requires a few
steps:

1. In the Navigator pane click our application.

346 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

2. Click the table icon in the top of the Tivoli Enterprise Portal desktop. Your
cursor changes and looks like the icon you just clicked. Move the cursor over
the undefined workspace and click. Answer Yes if a question window “Assign
the query now?” appears (Figure 8-37).

Figure 8-37 Creating a view - step 1

3. In the following window click Click here to assign the query.

 Chapter 8. Integration with other IBM Tivoli products 347

4. The Query Editor window appears. In the left pane expand the Universal
Data Provider branch. After that expand our application branch. Then expand
the attribute group branch and navigate to the deepest level of this branch.
The right pane shows all of the attributes defined within attribute group of our
application. Select or deselect the attributes so that you customize what
attributes you want to have your view (Figure 8-38).

Figure 8-38 Creating a view - step 2

5. Click OK in the Query Editor window. Also confirm the following window.

348 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

You have created a view displaying the monitored data. Figure 8-39 shows
the defined view.

Figure 8-39 Tivoli Enterprise Portal - Newly created view

8.4.9 Setting up thresholds

In this section we describe how to set up thresholds distinguishing displayed data
by severity.

 Chapter 8. Integration with other IBM Tivoli products 349

In a newly created view you can see the monitored data, but they are not
distinguished by severity. Tivoli Monitoring server does not know yet which data
carry information about something harmless, and which data report serious
errors. Figure 8-40 shows the example of the newly created view that has no
thresholds set up.

Figure 8-40 Tivoli Enterprise Portal - view without thresholds

To distinguish the way in which the data are represented, you must define
thresholds for a particular view. Thresholds determine which data should be
assigned specified severity (informational, warning, and critical).

350 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

To define thresholds do the following steps:

1. Right-click anywhere in the view and select Properties (Figure 8-41).

Figure 8-41 Setting up thresholds - step 1

2. Click the Thresholds bookmark. Each row represents a threshold for a
specified condition. Each row has more columns, and there is an AND
relationship among them. This means that the threshold condition is fulfilled
only if all of the conditions in row are true.

The frst column determines the severity. Possible choices are informational,
warning, and critical.

Any of next columns represents one condition. There must be at least one
condition set for the threshold to become active.

In our scenario we decided to set the critical threshold on any job, that was
submitted to the appropriate resource, but was not executed for any reason.
We also want to set a warning threshold on jobs for which the Tivoli Dynamic
Workload Broker server did not allocate any suitable resource within a defined
period.

 Chapter 8. Integration with other IBM Tivoli products 351

First we explain how to manipulate GUI for setting a particular condition. In
the following window situation editor click in the first numbered row on the cell
located below the Current State column. Two small buttons appeared in the
cell. The first button allows you to specify what we use from the monitored
value. The second button is an operand (equals/not equals).

If you click into any blank cell, two small buttons appear in that cell. The first
button allows us to specify what we compare in the monitored value, and the
second button is an operand (equals/not equals).

In each condition that we set up, we compare the substring of an incoming
monitored value with the string that we explicitly specify. For instance, if we
want to set a threshold on jobs that were not submitted, we search for a
substring Not within a job status.

Now set up the two thresholds that we mentioned above:

– CRITICAL if a job is not executed - Go to the first row and in the first
column leave severity set to CRITICAL. In the second column select Value
of expression == JobNotExecuted from the drop-down list.

– WARNING if no resources were allocated for the job - GO to the second
row and in the first column switch the severity to WARNING. In the second
column select Value of expression == ResourceAllocation from the
drop-down list.

352 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Figure 8-42 shows the example of how the particular cells should be filled in.

Figure 8-42 Setting up thresholds - step 2

 Chapter 8. Integration with other IBM Tivoli products 353

3. Click OK and refresh the view. You should see that the corresponding rows
have changed (Figure 8-43).

Figure 8-43 Tivoli Enterprise Portal - view with thresholds

Important: The steps in this section describe how a particular view was
customized to represent monitored data. This customization has nothing to do
with Tivoli Monitoring situations at all. Customizing a view gives you only a
possibility of how to distinguish data for operators. But unless you define a
situation (even with the same conditions that you have used for threshold
setting in a view), you cannot see the problems from the global perspective.
You must have the particular view put in your current workspace if you want to
be aware of its events. Furthermore, setting a threshold in a view does not
allow you to take an automatic corrective action. The steps of how to set up a
situation are described in 8.4.10, “Creating situations” on page 355. The
complete detailed step-by-step instructions, including snapshots, are included
in “Monitoring of DB2 availability on Windows” on page 359.

354 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

8.4.10 Creating situations

In this section we explain how to create a situation that is visible from the
enterprise perspective.

We implement a simple scenario that sends an SMS to a responsible system
administrator if a job generating monthly financial report did not execute.

First we create the situation (described in this section) and then we define the
automatic corrective action, which will send an SMS (described in 8.4.11,
“Setting up automatic corrective action” on page 357).

Go to the Tivoli Enterprise Portal window and do the following steps:

1. In the Navigator pane, go to the Universal Agent under the monitored
machine (Tivoli Dynamic Workload Broker server). Expand the Universal
Agent branch and select the application name that we defined in previous
steps. In our case the name is <hostname>:TDWB00. Right-click the
application and select Situations.

2. The situation editor appears. Click Create new situation in the upper left
corner. In the window that pops up, fill in the situation name
Monthly_Report_Not_Executed, and from the drop-down list select Universal
Agent. Click OK.

We want to create situation that will be fired if these conditions are met:

– Name of the monitored job is MonthlyReport
– Status of the monitored job is JobNotExecuted

First we need to select attributes that will be used for evaluating the situation
formula (when to fire a situation).

3. In the left pane select the source attribute group. In the left pane click JOB
and in the right pane select the attributes Job Name and Status.

4. Set the following evaluation criteria:

– Job name: Scan for substring within string == MonthlyReport

Type directly into the cell.

– Status: Scan for substring within string == JobNotExecuted

Select the value from the drop-down list.

 Chapter 8. Integration with other IBM Tivoli products 355

Figure 8-44 shows the situation formula.

5. Optionally, adjust the sampling interval. This interval specifies how often the
Windows OS agent will check the service status and send the results to the
Tivoli Monitoring server.

The value of the sampling interval can be any that fits your needs. We use 30
seconds in our scenario, but the recommended sampling interval is usually a
bit longer (from 2 to 5 minutes). Too short of a sampling interval produces
unnecessary load and too long of an interval can discover a possible failure
too late.

Figure 8-44 Situation formula for monitoring of particular job state

You have done all of the necessary steps for creating a situation that will be
fired when a Tivoli Dynamic Workload Broker job with the name
MonthlyReport will end with status JobNotExecuted or FailedExecution.

For more detailed step-by-step instructions (including snapshots), see a
similar scenario describing monitoring of the DB2 availability in “Monitoring of
DB2 availability on Windows” on page 359.

Important: The job states in the Tivoli Dynamic Workload Broker log file
are defined using enumerations (numbers paired to the string
representations). There is a known problem in the current releases of Tivoli
Dynamic Workload Broker V 1.1 and Tivoli Monitoring V 6.1 that does not
allow us to save the situation formula shown in Figure 8-44. This problem
will be fixed in a later releases.

356 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

8.4.11 Setting up automatic corrective action

In this section we describe how to configure Tivoli Monitoring so that it launches
a local script on the Tivoli Monitoring server, if a specified situation occurs.

1. In the Navigator pane, go to the Universal Agent under the monitored
machine (Tivoli Dynamic Workload Broker server). Expand the Universal
Agent branch and select the application name for which we have defined the
situation. The pplication name looks like <hostname>:TDWB00.

Right-click the application and select Situations.

2. In the next window navigate in the left pane to the
Monthly_Report_Not_Executed situation. Select it and in the right pane
click Take action.

Type C:\IBM\ITM\TMAITM6\scripts\send_sms.cmd into the text box System
Command.

Figure 8-45 shows the entire command syntax. We call the script and feed it
with meaningful data.

Figure 8-45 Script for corrective action with arguments

3. Make sure that you have Execute the Action at the Managing System (TEMS)
selected. Confirm by clicking OK.

Now you have completed the sample extension of the out-of-box integration of
Tivoli Dynamic Workload Broker with Tivoli Monitoring. So far you have:

� Configured the Tivoli Dynamic Workload Broker to log to the file.

� Configured the Tivoli Monitoring Universal Agent to parse this log file.

� Configured the view in the Tivoli Enterprise Portal so that gathered data are
displayed in the Tivoli Enterprise Portal.

� Set up thresholds so that gathered data are distinguished by severities.

Important: We assume that some alerting script responsible for sending
SMS is located in the local file system. The alerting script is not included in
this scenario, nor is it shipped with Tivoli Monitoring. This is just an example of
how to link the situation with an alerting script. Depending on your installation,
you should adjust the path to the script responsible for alerting.

 Chapter 8. Integration with other IBM Tivoli products 357

� Created a situation to be able to see important job states from the enterprise
perspective.

� Created the corrective action that is fired when a situation occurs (sending of
SMS when important jobs fail).

In the following sections we describe how can we use Tivoli Monitoring to check
the health of Tivoli Dynamic Workload Broker components.

8.4.12 Advanced monitoring of Tivoli Dynamic Workload Broker

The out-of-box Tivoli Dynamic Workload Broker integration with Tivoli Monitoring
provides monitoring of possible job states that are processed by the Tivoli
Dynamic Workload Broker. You can monitor which jobs were cancelled, which did
not find their necessary resources, which of them have failed, and so on.

Out-of-box integration of the Tivoli Dynamic Workload Broker and Tivoli
Monitoring does not provide monitoring of the health of Tivoli Dynamic Workload
Broker components themselves.

In this section we describe how to extend the out-of-box provided monitoring of
Tivoli Dynamic Workload Broker. Together with the out-of-box monitoring, we use
following monitoring techniques:

� Monitoring of Windows services using a Windows OS agent

� Using Universal Agent for launching custom scripts

� Parsing content of a log file using Universal Agent (out-of-box integration
described in 8.4.4, “Integration steps” on page 330)

We use these techniques to demonstrate how the Tivoli Dynamic Workload
Broker components can be monitored. In our scenarios we show how to monitor:

� DB2 availability on Windows

� Tivoli Dynamic Workload Broker Agent availability on Windows

� Availability of the ITDWB enterprise application running in the WebSphere
Application Server on Windows

Note: All of the scenarios included in this chapter were performed in a
Windows environment. However, the steps on UNIX/Linux platforms are
similar. The different default paths and commands are listed in 8.4.13, “Default
values and file locations” on page 391.

358 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Monitoring of DB2 availability on Windows
In this scenario we demonstrate how to monitor the availability of DB2. The Tivoli
Dynamic Workload Broker server uses DB2 as its persistent storage and thus
DB2 is a very important component.

As a simple descriptive example we have chosen a monitoring of Windows DB2
services. We use the standard Windows operating system agent for periodical
checking of DB2 service availability. If the service goes down, the Tivoli
Monitoring server fires a situation and launches a corrective action that restarts
the DB2 service.

In following steps we explain how to:

� View the default monitoring of a Windows service.
� Create a situation on service down state.
� Create a corrective action restart service.

Default monitoring of Windows services
The Tivoli Monitoring Windows OS agent can monitor many system values, such
as CPU utilization, memory usage, available disk space, and so on.

The important value for us is monitoring of the state of particular service. We use
a Tivoli Monitoring OS Agent to periodically check the states of DB2 services. In
this example we monitor all of the DB2 services that are configured to start
automatically during Windows startup. We do not monitor the DB2 services that
are started manually.

The first step is to ensure that the Windows OS agent is able to see the service
status. This option is available by default after the Windows OS agent is deployed
onto the target system.

Note: Before you start monitoring the DB2 used by the Tivoli Dynamic
Workload Broker server, you must deploy an Tivoli Monitoring Windows OS
agent to the system where DB2 is installed. This is not necessary if the
Windows OS agent is already installed on the target system.

 Chapter 8. Integration with other IBM Tivoli products 359

In the Navigator pane expand the branch of the monitored system (server where
DB2 is running and the Windows OS agent is installed). After that expand the
Windows OS and select System. Look at the right-bottom pane. The window
should display states of Windows services. Scroll down if necessary and search
for DB2-related services. See the Figure 8-46.

Figure 8-46 Default Windows services monitoring

This shows you that the Windows OS agent monitors the services properly.

Creating a situation for unavailable DB2 service
In this section we describe how to create a situation that will be fired when one of
the DB2 services crashes or stops.

360 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Do the following steps:

1. In the Navigator pane, go to the Windows OS under the monitored machine
(our DB2 server). Right-click the Windows OS and select Situations
(Figure 8-47).

Figure 8-47 Creating a situation - step 1

 Chapter 8. Integration with other IBM Tivoli products 361

2. A situation editor appears. Click Create new situation in the upper left
corner. In the window that popped up, fill in the situation name DB2_DOWN and
from the drop-down list select Windows OS (Figure 8-48).

Figure 8-48 Creating a situation - step 2

3. Now select the attributes that we will use for evaluating a situation. We want to
fire a critical situation when following conditions are met:

– Server name of the monitored system is our”host name
– Status of service is different from running
– Service startup type is automatic
– Name of monitored service contains string DB2
In the left pane click NT_Services. In the right pane choose following
attributes:

– Current state
– Display name (In this scenario you can use service name as well.)
– Server name
– Start type

362 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Figure 8-49 shows the selected attributes.

Figure 8-49 Creating a situation - step 3

4. The ext window contains a situation formula editor. In this window you define
the situation formula, which describes when the situation should be fired. The
situation formula consists of one or more evaluation criteria.

 Chapter 8. Integration with other IBM Tivoli products 363

In the following window situation editor click in the first numbered row on the
cell located below the Current State column. Two small buttons appear in the
cell. The first button allows you to specify what we compare in the monitored
value, and the second button is an operand (equals/not equals). See
Figure 8-50.

Figure 8-50 Creating a situation - step 4

5. As an action, select Scan for string within a string. Then select the!= (not
equals) attribute. Finally, fill in the value Running.

In this step you have specified one evaluation criteria, which instruct the Tivoli
Monitoring server to fire a situation when a data sample about any
not-running service arrives.

This is still not enough. If we specified only this one evaluation criteria a
situation would be fired on a crashed/stopped service.

364 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

We must specify a complete situation formula for a successful situation
evaluation:

– Status of service is different from running (already done in previous step)
– Name of monitored service contains string DB2
– Server name of the monitored system is our host name
– Service startup type is automatic

See Figure 8-51. Fill in the cells as shown in the example. For all columns use
the Scan for string within a string function and == (equals) operand. The only
case when we select the != (not equals) operand is the Current state column
because we are searching for occurrences other than running.

6. Now adjust the sampling interval. This interval specifies how often the
Windows OS agent checks the service status and sends the results to the
Tivoli Monitoring server.

The value of the sampling interval can be any that fits your needs. We have
used 30 seconds in our scenario, but the recommended sampling interval is
usually a bit longer (from 2 to 5 minutes). A too-short sampling interval
produces unnecessary load, and a too-long interval can discover a possible
failure too late.

Figure 8-51 Creating a situation - step 5

 Chapter 8. Integration with other IBM Tivoli products 365

7. Click the Formula button to see our formula. Note that we shrank the output
to one window for better visibility. In a real window, you need to move the
slider to see the entire formula (Figure 8-52).

Figure 8-52 Creating a situation - step 6

8. Close this window. Click OK and you are done with defining the situation that
monitors availability of DB2 services on Windows.

Testing the monitoring settings
In this section we describe a simple testing scenario. We test whether the
situation will fire when one DB2 service crashes or stops.

Do the following steps:

1. Stop one of the DB2 services, for instance, the DB2 Remote Command
Server.

Note: We strongly recommend doing the following steps only in a testing
environment. Do not stop any service in a production environment unless you
have a maintenance window arranged.

366 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Stop this service either via Windows Service Control Manager or using the
command line.

2. Switch to the Tivoli Enterprise Portal and observe the Navigator pane. Wait for
the same interval that you specified when defining the situation. Then the
view should change and error markings should be added into the Navigator
tree. If you point the mouse directly over the error marking, a hoover help will
pop up with more detailed information. Depending on your view configuration
and your position in the navigator pane, you should see output similar to
Figure 8-53.

Figure 8-53 Situation - DB2 service down with hoover help

We have successfully tested the monitoring of DB2 services.

Setting up a corrective action
In this section we describe how to set up a corrective action when DB2 service
crashes or stops. We set up a corrective action that restarts the crashed service
automatically.

 Chapter 8. Integration with other IBM Tivoli products 367

Do the following steps:

1. In the Navigator pane point to the server where we previously created the
DB2_DOWN situation (described in “Creating a situation for unavailable DB2
service” on page 360). Expand the branch and navigate to Windows OS.
Right-click the icon and select Situations (Figure 8-54).

Figure 8-54 Adding an action to situation- step 1

368 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

2. In the following window navigate in the left pane to the DB2_DOWN situation.
Select it and in the right pane select Take action (Figure 8-55).

Figure 8-55 Adding an action to situation - step 2

 Chapter 8. Integration with other IBM Tivoli products 369

3. Now type net start into the System Command text box. Click Attribute
Substitution. In the next window select Service Name (Figure 8-56).

Figure 8-56 Adding an action to situation - step 3

370 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

4. Click OK and look at the result in the System command text box. The
command was extended by a variable representing the name of the service
that fired the situation (Figure 8-57).

Figure 8-57 Adding an action to situation - step 4

5. Make sure that you have Execute Action at the Managed system (Agent)
selected. Confirm by clicking OK.

This is the last step of setting up the corrective action.

 Chapter 8. Integration with other IBM Tivoli products 371

Testing the corrective action
To test whether the service gets restarted after it has crashed (or was stopped),
do the following steps. They are in fact the same as in testing the situation.

1. Stop one of DB2 service, for instance, the DB2 Remote Command Server.

2. Stop this service either via Windows Service Control Manager or using a
command line.

3. Wait for the same interval that you specified when defining the situation. After
that refresh the Service Control Manager. The service should be running
again.

Monitoring of Tivoli Dynamic Workload Broker Agent
on Windows
In this section we describe how to monitor the availability of the Tivoli Dynamic
Workload Broker agent.

Each Tivoli Dynamic Workload Broker agent runs on top of the Tivoli Common
Agent. In fact, the main run time registered as a Windows service is the Common
Agent, and the Tivoli Dynamic Workload Broker agent runs only as a subagent of
the Common Agent. For more information about this topic see 2.4, “Common
Agent Services” on page 38.

On Windows the Common Agent is registered as a service. In our scenario we
use the Tivoli Monitoring Windows OS agent to monitor the Common Agent. The
Windows OS agent can monitor many system values, such as CPU utilization,
memory usage, available disk space, and so on. For our purposes we configure
the Windows OS agent to periodically check the state of a Windows service for
Common Agent.

Setting up the monitoring of the Tivoli Dynamic Workload Broker Agent is similar
to monitoring DB2, as described in “Monitoring of DB2 availability on Windows”
on page 359. The steps for monitoring the Tivoli Dynamic Workload Broker agent
availability are almost the same.

Note: We strongly recommend doing the following steps only in a testing
environment. Do not stop any service in a production environment unless you
have a maintenance window arranged.

Note: Before you start monitoring the Tivoli Dynamic Workload Broker Agent,
you must deploy an Tivoli Monitoring Windows OS agent to the target system.
This is not necessary if the monitoring agent is already installed on the system
where Tivoli Dynamic Workload Broker Agent runs.

372 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

We state all of the necessary steps for monitoring of a Common Agent’ Windows
service. We provide snapshots only for the most important part — situation
formula editor. If you are interested in looking at all snapshots describing the
setup of Windows service monitoring, read “Monitoring of DB2 availability on
Windows” on page 359 first.

Determining the name of monitored service
In this scenario we use the exact name of the monitored service.

We want to create situation that will be fired when the Tivoli Dynamic Workload
Broker Agent service is not running. To do this, we set a situation formula to
evaluate the following criteria:

� Status of service is different from running
� Name of monitored service is exactly the same as name Tivoli Dynamic

Workload Broker Agent service

We must determine the exact name of the Common Agent hosting the Tivoli
Dynamic Workload Broker Agent. Because of that, we must first find out the
name of the Common Agent service.

1. Launch the Service Control Manager (Start → Settings → Control Panel →
Administrative Tools → Services).

 Chapter 8. Integration with other IBM Tivoli products 373

2. Within the services, select the Tivoli Common Agent (Figure 8-58).

Figure 8-58 Tivoli Common Agent in Service Control Manager

374 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

3. Double-click it and read the service name (Figure 8-59).

Figure 8-59 Tivoli Common Agent service name

We will use this service name in the situation formula editor.

Setting up the monitoring of Agent service availability
Now we describe the steps that must be taken in order to configure Tivoli
Monitoring to fire a situation when a Common Agent (hosting the Tivoli Dynamic
Workload Broker agent) is not running.

1. In the Navigator pane, go to Windows OS under the monitored machine
(server where Common Agent runs). Right-click Windows OS and select
Situations.

2. The situation editor appears. Click Create new situation in the upper left
corner. In the window that pops up, fill in the situation name TDWB_Agent_DOWN,
and from the drop-down list select Windows OS.

3. We want to create a situation that will be fired when the agent service is not
running. First select NT_Services in the left pane and then select Service
Name and Current State in the right pane.

 Chapter 8. Integration with other IBM Tivoli products 375

4. In the situation formula editor set the following evaluation criteria:

– Current status: Scan for string within a string != Running

– Service name: Scan for string within a string ==
IBMTivoliCommonAgent0

We determined the name of the service in “Determining the name of
monitored service” on page 373. In our scenario, the service name is
IBMTivoliCommonAgent0.

5. Optionally, adjust the sampling interval. This interval specifies how often the
Windows OS agent will check the service status and send the results to the
Tivoli Monitoring server.

The value of the sampling interval can be any that fits your needs. We use 30
seconds in our scenario, but the recommended sampling interval is usually a
bit longer (from 2 to 5 minutes). Too short of a sampling interval produces
unnecessary load, and too long of an interval can discover a possible failure
too late.

Figure 8-60 Situation formula for monitoring of Agent service

6. Set up the correction action, if you want to. A corrective action will do the
following: each time the Windows OS agent detects a crashed (or stopped)
service of a Common Agent (host of Tivoli Dynamic Workload Broker Agent),
it will attempt to restart it automatically.

To set up the corrective action, click the Action bookmark, and into the text
box System Command type net start. Click Attribute Substitution and in
the window that pops up, select Service Name.

7. Make sure that you have Execute Action at the Managed system (Agent)
selected. Confirm by clicking OK.

You have done all of the necessary steps for creating a situation with its
corrective action.

For more detailed step-by-step instructions (including snapshots), see a
similar scenario describing monitoring of the DB2 availability in “Monitoring of
DB2 availability on Windows” on page 359.

Distributing monitoring of Universal Agent across environment
In the previous section we defined a situation that is fired when a Windows
service registered for Common Agent stops or crashes. In this section we

376 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

describe how to distribute this situation to other machines so that we can monitor
multiple instances of the Common Agent across the IT environment.

To distribute the defined situation to another system:

1. In the Navigator pane go to the Windows OS where we previously defined the
situation for the crashed/stopped Common Agent service. Right-click the icon.

2. In the following window navigate to the previously defined situation
TDWB_Agent_DOWN and then select the Distribution bookmark.

3. In the right pane select the systems where you want to monitor the availability
of the Common Agent. Be aware that only the systems that have Windows
OS agent installed are visible in the list.

4. Click the left arrow in the middle of the window.

5. Click OK.

Now you have modified the situation so that it fires whenever Common Agent
fails on any of selected systems.

Monitoring the ITDWB Enterprise Application
In “Monitoring of DB2 availability on Windows” on page 359 and “Monitoring of
Tivoli Dynamic Workload Broker Agent on Windows” on page 372 we described
how to use a Windows OS agent to monitor a specified Windows service
availability.

A similar approach with some differences can be used for monitoring on UNIX
and Linux platforms. Instead of monitoring services, we would focus on
monitoring processes.

In this section we show a different technique. We describe how to use the Tivoli
Monitoring Universal Agent to run a script that periodically checks the status of
the Tivoli Dynamic Workload Broker enterprise application running in the
WebSphere Application Server.

Custom monitoring scripts for WebSphere Application Server
The WebSphere Application Server provides by default two administrative
interfaces:

� Web administrative interface called Administrative console. This is an
enterprise application that offers a Web interface for managing the instance of
the WebSphere Application Server, enterprise applications running in the
WebSphere Application Server, and so on.

� Command line tool called wsadmin. Provides similar functionality as the
Administrative Console, but all of the commands are issued from the
command line and thus can be used in scripts.

 Chapter 8. Integration with other IBM Tivoli products 377

The wsadmin command serves for managing of the WebSphere Application
Server from teh command line. It reads instructions either from command line
or from a supplied file. When using simple commands, it is sufficient to issue
the wsadmin command with all parameters supplied directly in the command
line. For more complex actions or queries, instructions must be passed within
a file.

There are two possible languages that can be used for scripting with the wsadmin
command:

� Jacl - a Java implementation of the TCL language
� Jython - a Java implementation of the Python language

For our simple scenario we chose jacl language. In Example 8-4 we show the
script that is passed to the wsadmin command. We use this script in our scenario.
The script checks whether the ITDWB enterprise application (the Tivoli Dynamic
Workload Broker server) is running in the WebSphere Application Server.

Example 8-4 Jacl script for checking enterprise application status

set result_string [$AdminControl completeObjectName \
type=Application,name=ITDWB,*]
set TDWB_STATUS [string first ITDWB $result_string]

if {$TDWB_STATUS == -1} {
 puts "TDWB is NOT running!!"
} else {
 puts "TDWB is running."
}

It is not necessary to know the jacl syntax or wsadmin instructions at this time.
The logic,contained in the file is simple:

� The output of the first command is either empty (the requested enterprise
application is not running) or contains a message including the application
name.

� The rest of the file is just an evaluation of whether the first command exited
with an empty message. We try to find a substring ITDWB in the output of the
previous command. If we find this string, the script exits with the result that
TDWB is running. In the opposite case, the script exits with the result that
TDWB is not running.

Note: The first line ends with a backslash (\). This is a typical UNIX convention
instructing the interpreter that the line is not completed and continues on the
following line.

378 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Save this file into file C:\IBM\ITM\TMAITM6\scripts\websphere_check_tdwb.jacl.

For the UNIX default path see Table 8-4 on page 392.

Calling the instructions for wsadmin script from command line
To use the wsadmin with the script file you must do the following:

1. Source the environment used by the WebSphere Application Server.

2. Run the wsadmin command located in the bin subdirectory of the WebSphere
Application Server installation directory with the following arguments:

wsadmin -f name_of_script_file

Example 8-5 shows the complete script on Windows.

Example 8-5 Windows script used to call wsadmin interface

@echo off
SET SystemRoot=C:\WINDOWS
c:\progra~1\ibm\websphere\appserver\bin\wsadmin -f c:\ibm\itm\tmaitm6\s
cripts\websphere_check_tdwb.jacl

This script contains the minimal necessary set of environmental variables used
for the wsadmin command for WebSphere Application Server 6.0 on Windows.

Save the content into file
C:\IBM\ITM\TMAITM6\scripts\websphere_start_tdwb.cmd.

Now we have to configure the Tivoli Monitoring Universal Agent to periodically
launch this file and evaluate its output.

Configuring Universal Agent to use script data provider
Even if the Tivoli Monitoring Universal Agent should accept script files as its data
provider by default, we experienced different behavior in our scenarios. Unless
we explicitly specified a “SCRIPT” data provider in the configuration of Universal
Agent, we did not see any input from the Tivoli Dynamic Workload Broker server.

For setting the script data provider as a data source for a particular Universal
Agent (the Universal Agent, which runs on the same machine as the DB2
server), see 8.4.6, “Configuring Universal Agent to accept a FILE data provider”
on page 337. Follow all the steps, with one change. When supplying the “FILE”

Note: Scripts launched by Tivoli Monitoring Universal Agent can be supplied
with separated envfile, which sources the necessary environment. In our
scenario we do not use Universal Agent envfile, we set the environment
variables directly in the script.

 Chapter 8. Integration with other IBM Tivoli products 379

data provider (as shown in Figure 8-32 on page 343), add “SCRIPT” to the end of
line. The content of Universal Agent’s environment file is shown in Figure 8-61.

Figure 8-61 Configuring the environment of Universal Agent for SCRIPT data provider

Universal Agent metafile for script data provider
In this section we describe the basic information that is necessary for configuring
the Universal Agent to use a custom script.

Universal Agent can read the data from various sources. Based on data source,
the metafile can have completely different syntax.

At least four rows are necessary for a metafile pointing to a script:

� Application name
� Attribute group name
� Source name (script path)
� At least one attribute name

As an example we provide the complete metafile that we use in this scenario. By
importing the following metafile into Universal Agent, the Universal agent will:

� Periodically issue a script checking ITDWB Web application availability.
� Parse output of this script.

380 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

� Format the output into attributes.
� Send the attributes to the Tivoli Monitoring server.

Example 8-6 shows the metafile that we use in this scenario for periodical checks
of ITDWB database availability.

Example 8-6 Metafile used for monitoring of ITDWB Web application

//APPL WEBSPHERE_CHECK_TDWB
//NAME WEBSPHERE_STATUS K 90 AddSourceName AddTimeStamp
//SOURCE SCRIPT websphere_check_tdwb.cmd
//ATTRIBUTES
status R 256 +FILTER={SCAN(0,TDWB is)}

Now we explain each row of the metafile:

� //APPL WEBSPHERE_CHECK_TDWB

Each metafile must contain an application with a unique name. Be aware that
also the first three characters of the application name must be unique within
Tivoli Monitoring environment. Another technical limitation is that the
application name must not start with a K character because this character is
reserved as the prefix for Tivoli Monitoring commands.

The application name used in our example is WEBSPHERE_CHECK_TDWB.
The name is correct because it does not start with K and because the first
three characters (WEB) are a unique prefix within Tivoli Monitoring
environment.

� //NAME WEBSPHERE_STATUS K 90 AddSourceName AddTimeStamp

This row contains the name of an attribute group. An attribute group is
nothing more than a set of attributes of various data types (strings,
timestamps, integers, and so on). You can imagine a attribute group as a row
in the table (for instance, on an event) with its columns (each value in a
column is one attribute). An attribute group should contain at least one

 Chapter 8. Integration with other IBM Tivoli products 381

attribute, but often it is much more (timestamp, hostname, message,
monitored entity status, and so on). An attribute group is represented in the
Tivoli Enterprise Portal in a subtree of its application. Figure 8-62 shows how
applications, attributes, and attribute groups are represented in the Tivoli
Enterprise Portal.

Figure 8-62 Applications, attributes, and attribute groups within Tivoli Enterprise Portal

Additional parameters in this row have this meaning:

– K - keyed attribute group

– 90 - time to live (TTL). Specifies how long is each attribute set (one data
sample) is alive. When this interval expires the attribute set vanishes from
Tivoli Enterprise Portal. The value of TTL should be larger than the
sampling interval, which is explained below.

– AddSourceName - adds an attribute that carries the host name of the
monitored server.

– AddTimeStamp - adds the time when the sample was acquired.

� //SOURCE SCRIPT websphere_check_tdwb.cmd

In this row a source of sampled data is specified. For our purposes we use the
SCRIPT keyword. If we wanted to monitor a text log file, we would use the
FILE keyword.

382 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

� //ATTRIBUTES

This is a delimiter announcing a beginning of an attributes definition. No
additional parameters are necessary for this row.

� status R 256 +FILTER={SCAN(0,TDWB is)}

We define an attribute with name status.
Additional parameters in this row have the following meaning:

– R - record. Take all the content of the scripts output.

– 256 - maximal attribute size (string with maximal length of 256 characters).

– +FILTER={SCAN(0,TDWB is)} - filtering the text output of the script. Get
only those rows, which contain a string “TDWB is”. When searching for
“TDWB is”, start at the beginning of each row. The plus(+) sign means that
the filter is inclusive (it filters in the rows that match the pattern “TDWB is”).

We search for string “TDWB is” because this pattern is contained in the
only meaningful script, websphere_check_tdwb.cmd, which we have
described before.

Save the metafile definition from Example 8-6 on page 381 into text file
C:\IBM\ITM\TMAITM6\metafiles\websphere_check_tdwb.mdl.

We have completed the metafile. Now it is ready for validating and import into
Universal Agent.

Validating and importing the metafile
Validation of a metafile is a process that checks whether the metafile does not
contains syntax errors. If the metafile is correct, the validation may continue with
importing the metafile into the Universal Agent definitions.

Note: As you can see, the file name does not include the full path in this
example. When the full path is not specified, the Universal Agent expects
the file to be in the scripts subdirectory. On Windows the default path for
Universal Agent scripts is C:\IBM\ITM\TMAITM6\scripts. If the script is
located in another directory, you must supply the file name with the
complete path.

Note: In fact, you can save the metafile into any directory you want, with a
different file name and extension. Nothing is mandatory, but keeping the
default paths and naming conventions makes any further maintenance easier.

 Chapter 8. Integration with other IBM Tivoli products 383

Validation of metafile is performed with the following command:

kumpcon validate metafile_name

Example 8-7 shows the validation of the metafile websphere_check_tdwb.mdl. If
the validation was successful, you are asked whether you want to import the
application defined in this metafile into Universal Agent. To import the metafile,
enter i and press Enter. After that the application is imported into the Universal
Agent. When the application gets imported, it is active immediately.

Example 8-7 Validation and import of metafile definition

C:\IBM\ITM\TMAITM6>kumpcon validate websphere_check_tdwb.mdl
KUMPS001I Console input accepted.
KUMPV025I Processing input metafile
C:\IBM\ITM\TMAITM6\metafiles\websphere_check.mdl
KUMPV026I Processing record 0001 -> //APPL WEBSPHERE_CHECK_TDWB
KUMPV149I Note: APPL names starting with letters N-Z are designated for
customer UA solutions.
KUMPV026I Processing record 0002 -> //NAME WEBSPHERE_STATUS K 300
AddTimeStamp Interval=60
KUMPV026I Processing record 0003 -> //SOURCE SCRIPT
websphere_check_tdwb.cmd
KUMPV026I Processing record 0004 -> //ATTRIBUTES
KUMPV026I Processing record 0005 -> status R 256 +FILTER={SCAN(0,TDWB)}
KUMPV026I Processing record 0006 ->
KUMPV027I Blank input record skipped
KUMPV000I Validation completed successfully
KUMPV090I Application metafile validation report saved in file
C:\IBM\ITM\TMAITM6\metafiles\websphere_check_tdwb.rpt.

KUMPS065I Do you wish to Import or Refresh this metafile?
<Import/Refresh/Cancel>
i

Note: All the commands must be issued from the directory of the Universal
Agent. This directory corresponds to the CANDLE_HOME variable. On
Windows it is C:\IBM\ITM. The path of Universal Agent is thus
C:\IBM\ITM\TMAITM6. You must be in this directory to issue the Universal
Agent commands.

384 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

KUMPS020I Import successfully completed for
websphere_check_tdwb.mdl

Now you have everything prepared on the agent side. Another steps must be
done in the Tivoli Enterprise Portal.

Viewing the application in Tivoli Enterprise Portal
In previous steps we took these actions:

� Configured Universal Agent to be able to use the SCRIPT data provider.

� Created a monitoring script and stored it into the Universal Agents
subdirectory dedicated for scripts.

� Created a metafile, pointing to that script and parsing its output. This metafile
defines a new application and a new attribute group that will be visible in Tivoli
Enterprise Portal. We stored the metafile in the Universal Agents subdirectory
dedicated for metafiles.

� Validated the syntax of the metafile and imported it into the Universal Agent.

The result of these actions should be visible in the Tivoli Enterprise Portal. If you
performed these actions while the Tivoli Enterprise Portal was running, you can
see a message showing that the Navigator pane needs to be updated.

After you have refreshed the Navigator pane, you can see that a new application
has been added. The name of the new application should consist of the Tivoli
Dynamic Workload Broker server host name and the application name specified
in the Universal Agent’s metafile. The two-digit suffix displays the application
version and modification number (initial value is 00). In our case the application
name should be <hostname>:WEBSPHERE_CHECK_TDWB00.

Creating a view on monitored data
In this section we describe how to create a view that displays the monitored data.

A view displays the monitored data in the way we choose. It may be table, many
sorts of graphs, or whatever Tivoli Enterprise Portal offers.

Note: If you specify the metafile name without the full path, it must be located
in Universal Agent metafiles subdirectory. On Windows the default path for
Universal Agent metafiles is C:\IBM\ITM\TMAITM6\metafiles. If the metafile is
located in another directory, you must supply the file name with the complete
path.

 Chapter 8. Integration with other IBM Tivoli products 385

For our purposes a table view is sufficient. Defining that view requires a few
steps:

1. In the Navigator pane click our application.

2. Click the table icon in the top of the Tivoli Enterprise Portal desktop. Your
cursor changes and looks like the icon you just clicked. Move the cursor over
the undefined workspace and click. Answer Yes if a question window Assign
the query now? appears.

3. In the following window click Click here to assign the query.

4. The Query Editor window appears. In the left pane expand the Universal
Data Provider branch. After that expand our application branch. After that
expand the attribute group branch and navigate to the deepest level of this
branch. The right pane will show all the attributes defined within the attribute
group of our application. Select or deselect the attributes so that you
customize what attributes you want to have your view.

5. Click OK in the Query Editor. Also confirm the following window.

You have created a view displaying the monitored data.

Setting up thresholds
In this section we describe how to set up thresholds distinguishing displayed data
by severity.

You can see the monitored data, but they are not distinguished by severity. Tivoli
Monitoring server does not know yet which data carry information about
something harmless, and which data report serious errors.

To distinguish the way in which the data are represented, you must define
thresholds for a particular view. Thresholds determine which data should be
assigned specified severity (informational, warning, or critical).

To define thresholds:

1. Right-click anywhere in the view and select Properties.

2. Click Thresholds. Each row represents the threshold for a specified
condition. Each row has more columns, and there is an AND relationship
among them. This means that the of threshold condition is fulfilled only if all
the conditions in a row are true.

The first column determines the severity. Possible choices are informational,
warning, and critical. Any of the next columns represents one condition. There
must be at least one condition set for the threshold to become active.

In our scenario we want to set the critical threshold on the status TDWB is NOT
running!

386 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

In the first column leave severity set to critical. In the second column select
Scan for string within a string function and the == (equals) operand. Then
fill in the word NOT into the cell.

The word NOT is sufficient for the formula. The monitoring script returns two
possible values of attribute status:

– TDWB is running.
– TDWB is not running.

Because we compare only a substring from output (we use the option “Scan
for string within a string”), it is enough if we specify only the unique part of the
string.

3. Click OK and refresh the view. You should see that the corresponding rows
have changed.

Creating a situation
In this section we describe the steps that must be taken in order to configure
Tivoli Monitoring to fire a situation when a a custom script returns output TDWB is
NOT running!!

1. In the Navigator pane, go to the Universal Agent under the monitored
machine (Tivoli Dynamic Workload Broker server). Expand the Universal
Agent branch and select the application name that we defined in previous
steps. In our case the name is
<hostname>:WEBSPHERE_CHECK_TDWB00. Right-click the application
and select Situations.

Important: This section describes how a particular view was customized to
represent monitored data. This customization has nothing to do with Tivoli
Monitoring situations at all. Customizing a view gives you only a possibility off
how to distinguish data for operators. But unless you define a situation (even
with the same conditions that you used for threshold setting in a view), you
cannot see the bad things from the global perspective. You must have the
particular view put in your current workspace if you want to be aware of its
events. Furthermore, setting a threshold in a view does not allow you to take
an automatic corrective action.

Note: In this section we list the steps necessary for creating the situation
without snapshots. The detailed step-by-step instrucions for creating a
situation, including snapshots, are in “Monitoring of DB2 availability on
Windows” on page 359.

 Chapter 8. Integration with other IBM Tivoli products 387

2. The situation editor appears. Click Create new situation in the upper left
corner. In the window that pops up fill in the situation name
TDWB_Server_DOWN, and from the drop-down list select Universal Agent. Click
OK.

3. We want to create situation that will be fired when the monitoring script
returns output TDWB is NOT running!! First we need to select attributes that
will be used for evaluating the situation formula (when to fire a situation). In
the left pane select the source attribute group. In our case it is WEBSHERE
STATUS. In the right pane select attribute Status.

4. In the situation formula editor set the following evaluation criteria: status:
Scan for string within a string == NOT.

The word NOT is sufficient for the formula. The monitoring script returns two
possible values of attribute status:

– TDWB is running.
– TDWB is NOT running!!

Because we compare only a substring from output (we use the option “Scan
for string within a string”), it is enough if we specify only the unique part of the
string.

Figure 8-63 shows the situation formula.

5. Optionally, adjust the sampling interval. This interval specifies how often the
Windows OS agent will check the service status and send the results to the
Tivoli Monitoring server.

The value of the sampling interval can be any that fits your needs. We have
used 30 seconds in our scenario, but the recommended sampling interval is
usually a bit longer (from 2 to 5 minutes). Too short of a sampling interval
produces unnecessary load, and too long of an interval can discover a
possible failure too late.

Figure 8-63 Situation formula for monitoring of ITDWB enterprise application availability

Now you have done all the necessary steps for creating a situation that will fire
when the monitoring script returns result TDWB is not running!!

For more detailed step-by-step instructions (including snapshots), see a similar
scenario describing monitoring of the DB2 availability in “Monitoring of DB2
availability on Windows” on page 359.

388 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Setting up corrective action
Now we describe how to set up a corrective action to the situation that we have
defined in the previous section.

In this case we want to start the ITDWB enterprise application installed in the
WebSphere Application Server. We use the same mechanism for starting the
enterprise application as for checking its state. We use a wsadmin command with
its instruction file for making calls directly into the WebSphere Application Server.
For more details about the wsadmin command see “Custom monitoring scripts for
WebSphere Application Server” on page 377 and “Calling the instructions for
wsadmin script from command line” on page 379.

First we need to create an instruction file for the wsadmin administration
command. We chose the jacl programming language. The content of the file is
displayed in Example 8-8.

Example 8-8 Jacl script for starting the enterprise application

set appManager [$AdminControl queryNames \
cell=athensNode01Cell,node=athensNode01,type=ApplicationManager,process
=server1,*]
$AdminControl invoke $appManager startApplication ITDWB

Save the content into file
C:\IBM\ITM\TMAITM6\scripts\websphere_start_tdwb.jacl.

Important: In Example 8-8 on page 389 we use hard-coded values for cell,
node, and server attributes. You must modify the values to correspond to your
WebSphere Application Server installation. At the least you have to change
the host name included in the values for node and cell. Consult your
WebSphere Application Server administrator if unsure about the correct
values.

Note: The first line ends with a backslash (\). This is a typical UNIX convention
instructing the interpreter that the line is not completed and continues on the
following line.

 Chapter 8. Integration with other IBM Tivoli products 389

Example 8-9 contains the corresponding Windows script that calls the wsadmin
command with its instruction file.

Example 8-9 Windows script used to call wsadmin interface

@echo off
SET SystemRoot=C:\WINDOWS
c:\progra~1\ibm\websphere\appserver\bin\wsadmin -f c:\ibm\itm\tmaitm6\s
cripts\websphere_start_tdwb.jacl

Save the content into file
C:\IBM\ITM\TMAITM6\scripts\websphere_start_tdwb.cmd.

Now you have prepared the necessary scripts that will be invoked by the Tivoli
Monitoring automatic corrective action.

Switch to the Tivoli Enterprise Portal and do the following:

1. In the Navigator pane, navigate to the Universal Agent under the monitored
machine (Tivoli Dynamic Workload Broker server). Expand the Universal
Agent branch and select the application name for which we have defined the
situation. The application name looks like this
<hostname>:WEBSPHERE_CHECK_TDWB00.

2. Right-click the application and select Situations.

3. In the next window navigate in the left pane to the TDWB_Server_DOWN
situation. Select it and in the right pane select Take action.

4. Type C:\IBM\ITM\TMAITM6\scripts\websphere_start_tdwb.cmd into the
textbooks System Command.

5. Make sure that you have Execute Action at the Managed system (Agent)
selected. Confirm by clicking OK.

Testing the situation and corrective action
To test whether the ITDWB enterprise application gets restarted after it has
crashed (or was stopped), do the following steps.

1. Log on to the WebSphere Application Server Administrative Console (open
the Web browser and go to
http://<tdwb_server_hostname>:9060/ibm/console).

Note: We strongly recommend doing the following steps only in a testing
environment. Do not stop any service in a production environment unless you
have a maintenance window arranged.

390 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

2. In the left pane expand Applications and then select Enterprise
Applications. Select the ITDWB checkbox. Click STOP in the menu above.
The status of the ITDWB application will change from running to stopped.

3. Wait for the same interval that you specified when defining the situation. After
that click again Enterprise Applications in the left pane. The state of ITDWB
enterprise application should change back to running.

8.4.13 Default values and file locations

This chapter lists default values, such as the locations of important files, values
passed to Tivoli Dynamic Workload Broker - Tivoli Monitoring integration script,
and so on.

Default values on Windows platforms
Default paths and other values for Windows platforms are listed in Table 8-3.

Table 8-3 Default monitoring related values on Windows

Name Default value

Script for sourcing an environment C:\Program Files\IBM\ITDWB\bin\
tdwb_env.bat

Integration script C:\Program Files\IBM\ITDWB\bin\
tepconfig.bat

Tivoli Dynamic Workload Broker
TEPListener configuration file

C:\Program
Files\IBM\ITDWB\config\TEPlistener.prop
erties

Metafile definition for Universal Agent so it
is able to parse the messages in the
TDWB log file

C:\Program
Files\IBM\ITDWB\Server\TEP\
TDWBMeta_Sample.mdl

ITM default directory (corresponding to
CANDLE_HOME)

C:\IBM\ITM

Universal Agent home directory C:\IBM\ITM\TMAITM6

Universal Agent binary C:\IBM\ITM\TMAITM61\kuma610.exe

Universal Agent console command
(import, validation, and so on)

C:\IBM\ITM\TMAITM61\kumpcon.exe

Universal Agent metafile path C:\IBM\ITM\TMAITM6\metafiles

Universal Agent script path C:\IBM\ITM\TMAITM6\scripts

 Chapter 8. Integration with other IBM Tivoli products 391

Default values on UNIX platforms
Default paths and other values for UNIX platforms are listed in Table 8-4.

Table 8-4 Default monitoring related values on UNIX

List of all possible states of Tivoli Dynamic Workload Broker
jobs
� FAILED
� SUCC
� RES_ALLOC_RECEIVED
� EXEC
� RES_ALLOC_FAILED
� UNKNOWN
� NOT_EXECUTED
� WAIT_FOR_RES
� SUBMITTED_TO_ENDPOINT
� SUBMITTED
� PENDING_CANCEL
� CANCEL_ALLOC
� RES_REALLOC

Name Default value

Script for sourcing of environment
variables

. /opt/IBM/ITDWB/Server/bin/
tdwb_env.sh

Integration script /opt/IBM/ITDWB/Server/bin/ tepconfig.sh

Tivoli Dynamic Workload Broker
TEPlistener configuration file

/opt/IBM/ITDWB/Server/config/TEPlisten
er.properties

Metafile definition for Universal Agent, so
it is able to parse the messages in the
TDWB log file

/opt/IBM/ITDWB/Server/TEP/
TDWBMeta_Sample.mdl

ITM default directory (corresponding to
CANDLE_HOME)

/opt/IBM/ITM

Universal Agent home directory /opt/IBM/ITM/TMAITM6

Universal Agent binary /opt/IBM/ITM/TMAITM61/kuma610

Universal Agent console command
(import, validation, and so on)

/opt/IBM/ITM/TMAITM61/kumpcon

Universal Agent metafile path /opt/IBM/ITM/TMAITM6/metafiles

Universal Agent script path /opt/IBM/ITM/TMAITM6/scripts

392 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

� RES_REALLOC_FAILED
� CANCEL

Default list of TDWB job states written into log file
By default, only the following states are logged into the log file:

� FAILED
� RES_ALLOC_FAILED
� NOT_EXECUTED
� RES_REALLOC_FAILED
� CANCEL

For troubleshooting Tivoli Monitoring integration refer to 10.3, “Troubleshooting
the integration with IBM Tivoli Monitoring” on page 504.

 Chapter 8. Integration with other IBM Tivoli products 393

394 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Chapter 9. Interacting with Tivoli
Dynamic Workload Broker
using the Web services
interface

The intent of this chapter is to provide a description that allows you to integrate
your business applications with Tivoli Dynamic Workload Broker. Business
applications running in your environment may require you to submit external jobs.

The following are discussed in this chapter:

� “Why you would use the Web services interface” on page 396

� “Web services concepts” on page 397

� “Deeper view of jobs in Tivoli Dynamic Workload Broker” on page 400

� “Web services interfaces provided by the Tivoli Dynamic Workload Broker
server” on page 403

� “Creating the sample client” on page 435

9

© Copyright IBM Corp. 2007. All rights reserved. 395

9.1 Why you would use the Web services interface

Selecting the right candidate for the external job in heterogeneous and
distributed environment is not an easy task. Usually it requires additional efforts
of developers to implement logic evaluating where to launch a specific external
job based on its requirements. Integration with the Tivoli Dynamic Workload
Broker could solve this task quickly and efficiently.

Tivoli Dynamic Workload Broker is a complex application that relies on the
service-oriented architecture (SOA). It provides the Web services interface that
allows your business applications to programmatically leverage the job
management capabilities provided by Tivoli Dynamic Workload Broker. You can
easily incorporate Tivoli Dynamic Workload Broker into the service-oriented
architecture (SOA) in your environment.

You can easily extend your business applications by job brokering capabilities by
using the Web services interface provided with Tivoli Dynamic Workload Broker.
Your business applications may focus on their own logic. Management of external
jobs (that are dependent on suitable resources) is passed to the Tivoli Dynamic
Workload Broker. It will find the best suitable resource for running the job and will
manage the job’s life cycle. The application integrated with the Tivoli Dynamic
Workload Broker through the Web services interface can perform similar
operations, as the operator using the Tivoli Dynamic Workload Broker
command-line interface.

In this chapter we describe the mechanism of how to access the Tivoli Dynamic
Workload Broker server from external applications using the Web services
technology.

We briefly describe the concept of Web services, list the available Tivoli Dynamic
Workload Broker Web services, and describe their operations. Finally, we provide
a scenario describing how to build a sample client that integrates with Tivoli
Dynamic Workload Broker through the Web services interface.

It is beyond the scope of this document to provide a detailed description of the
Web services technology and related programming techniques. For a detailed
description of the Web services architecture visit
http://www.w3.org/TR/ws-arch/ or read Web Services Handbook for
WebSphere Application Server 6.1, SG24-7257.

396 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

http://www.w3.org/TR/ws-arch/

9.2 Web services concepts

In this chapter we focus on those terms and technologies that are necessary for
building a client leveraging the Web services interface provided by the Tivoli
Dynamic Workload Broker server.

We do not describe the Web services in detail or list all of the underlying
technologies. We just provide an overview of the techniques that we use in our
scenario.

9.2.1 Brief description of Web services

While there is no commonly accepted definition for Web services, we can try to
define a Web services concept from two different perspectives.

From the business perspective Web services are a mechanism that brings
service-oriented architecture into life. Business applications can easily integrate
with another business applications and thus maximize their potential. By using
the Web services concepts, the applications can be organized more from the
business perspective rather than from the IT perspective. Coupling the
applications through Web services allows rapid integration of heterogeneous
components and thus significantly reduces the investments necessary for
integration development.

From the technical perspective Web services are one of the implementations of
the Distributed Objects architecture. In addition to the Distributed Objects
architecture, Web services offer several features that make them the best
candidate for implementing the service-oriented architecture.

Important: In this chapter we describe the Web services interface available
with Tivoli Dynamic Workload Broker V1.2. This release (planned general
availability in June 2007) runs on WebSphere Application Server V6.1, since
the Web services interface does not work with Tivoli Dynamic Workload
Broker V1.1.

For building an application leveraging Tivoli Dynamic Workload Broker Web
services interface, you should use at least Tivoli Dynamic Workload Broker
V1.2 installed on WebSphere Application Server V6.1. Otherwise, your
application may not function correctly. We performed our tests for this chapter
on a beta version of Tivoli Dynamic Workload Broker V1.2.

 Chapter 9. Interacting with Tivoli Dynamic Workload Broker using the Web services interface 397

In the following sections we briefly explain the basic concepts of distributed
objects and then we mention the advantages that make Web services more
competitive and efficient for today’s world’s needs.

Distributed objects architecture
From the technical point of view Web services are just another concept
implementing the distributed objects architecture, such as Common Object
Request Broker Architecture (CORBA), Common Object Model (COM), or
Remote Method Invocation (RMI).

The architecture of distributed objects allows us to call remote objects (objects
that are running in a different address space) by a local objects as if they were
running locally (in the same address space as the local objects). This is
implemented by propagating interfaces of the remote object as skeleton and stub.
Skeleton is an interface on the remote side (typically server side) and stub is an
interface on the local side. Stub and skeleton communicate through the network
using a defined protocol and messaging standard.

Now we describe the data flow that occurs when a local object requests a
response from the remote object. The request can be as simple as “compute 2+2
and give me a result” or a query, which may result in complex response. It
depends on the application logic.

Distributed objects - data flow
The data flow in Distributed Objects architecture is:

1. The local application (typically client) has stub code incorporated and calls
the methods (commands, actions) that are defined by the stub. The client
thinks that he communicates with the real object implementation.

2. The stub translates the request into the message and transfers the message
thought the network to the skeleton (remote interface of the remote object).

3. The skeleton then invokes the desired method on the real object instance.

4. Within the remote object instance the internal logic is computed (for instance,
“return result of a+b”).

5. The result is passed back to the skeleton. The skeleton translates the result
into the message and sends it through the network to the stub.

6. The stub then reads the message and converts it to the response for the
requestor (client application object).

7. The requestor processes the response. All of the above described
communication is hidden from the local object (requestor). The local object
was thinking that he directly called the instance of the remote object.

398 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Web services - implementation of Distributed Objects
Now when we describe the distributed objects, we repeat that Web services is
just one of the possible implementations of this Distributed Objects architecture.
Unlike the CORBA and COM, Web services has more capabilities. The most
important of them are:

� Web services has unified messaging syntax based on XML.

� Web services is in the majority leverage HTTP (HTTPS) protocol, so it is very
easy to make it work through firewalls.

From the technical perspective this topic is very important. Issues with ports
opened during the communication among remote components are important
disadvantages of other Distributed Objects implementations.

� Web services is indenpendent on platform and on programming language
used for applications it is integrating. Principally, the application written in C++
running on a Linux server can communicate with another application written
in Java and running on a Windows system.

� There are commonly accepted techniques that implement a registry of Web
services. A term related to this topic is Service Broker. However, no final
unified standard exists at the time of publishing this book. Currently, a Web
Services Inspection Language (WSIL) and Universal Description, Discovery
and Integration (UDDI) implement the service registry.

� Web services is widely supported by the major vendors.

Web services leverages many industry standards, such as XML, JAX-RPC,
SOAP, and so on. For the purposes of this chapter (building a sample client
communicating with Tivoli Dynamic Workload Broker server through Web
services) only a basic understanding of the following technologies is sufficient:

� Extensible Markup Language (XML) - the generic markup language that can
be used to describe any kind of content in a structured way. Unlike HTML, the
XML does not focus on the presentation layer, it just describes the data in the
structured way by using nested elements.

� Simple Object Access Protocol (SOAP) - is a lightweight platform
indenpendent messaging protocol. The syntax of SOAP is based on XML.
Web services leverages SOAP as its messaging protocol.

� Java API for XML-based Remote Procedure Call (JAX-RPC) - is an
application interface that allows calling remote procedures using XML (SOAP)
messages. Leveraging JAX-RPC allows the programmer to call just the
JAX-RPC API, and it performs all of the necessary tasks for transforming the
requests/responses into and from SOAP messages.

� Web Services Description Language (WSDL) - is a language for defining
services as a collection of endpoints that are capable of exchanging

 Chapter 9. Interacting with Tivoli Dynamic Workload Broker using the Web services interface 399

messages. WSDL is also an XML-based language. Operations provided by
the Web services, their parameters, and data types are described in WSDL.
We provide many examples in this chapter that are written in WSDL.

There is one more term that you should be familiar with before you start to
develop the client for the Tivoli Dynamic Workload Broker server. This term is
JSDL, which is an acronym of Job Submission Definition Language. JSDL is an
XML-based language that is used for defining jobs for the Tivoli Dynamic
Workload Broker. We use one JSDL file in our scenario. The Job Submission
Definition language is described in Chapter 4, “Working with Tivoli Dynamic
Workload Broker” on page 141. A detailed JSDL reference is included in IBM
Tivoli Dynamic Workload Broker User's Guide Version 1.1, SC32-2281.

9.3 Deeper view of jobs in Tivoli Dynamic Workload
Broker

In this section we describe the possible states of jobs that were submitted to the
Tivoli Dynamic Workload Broker server. We provide a state diagram showing the
job life cycle and explain the job states. We also briefly describe the job
management actions that can be called from the client.

This knowledge is useful for developing the integration interfaces of your
business applications with the Tivoli Dynamic Workload Broker through the Web
services interface.

9.3.1 Job definitions

All Tivoli Dynamic Workload Broker jobs are defined in the Job Submission
Definition Language. In the following sections we reference this language by its
acronym, JSDL.

JSDL is an XML-based language. The complete schema reference for the JSDL
can be found in IBM Tivoli Dynamic Workload Broker User's Guide Version 1.1,
SC32-2281.

400 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

There are two different approaches that can be used for storing the job
definitions:

� Storing the job definitions on the file system into files, typically with the .jsdl
extension.

� Storing the job definitions in the Job Repository on the Tivoli Dynamic
Workload Broker server. The Job repository is physically represented by a
couple of tables in database TDWB defined in the RDBMS.

9.3.2 Job life cycle within Tivoli Dynamic Workload Broker

In this section we show the job life cycle within Tivoli Dynamic Workload Broker.
We provide a state diagram showing the possible job states and the defined
changes among the job states.

Figure 9-1 shows the flow of job states. The job states marked with an asterisk
(*) are final states.

Figure 9-1 Job life cycle within Tivoli Dynamic Workload Broker server

Note: The Tivoli Dynamic Workload Broker V1.2 supports IBM DB2, as
well as Oracle RDBMS. The Tivoli Dynamic Workload Broker V1.1 only
supports DB2.

 Chapter 9. Interacting with Tivoli Dynamic Workload Broker using the Web services interface 401

Table 9-1 provides a list of possible job states and their descriptions.

Table 9-1 Possible job states

We use the job status as the evaluation criteria in our sample scenario.

9.3.3 Client interactions

In this section we briefly describe how the client application is able to interact
with the Tivoli Dynamic Workload Broker through the Web services interface.

 Job state Description

Submitted The Job Dispatcher has accepted and persisted a new job request for
execution from the submitter.

Waiting_for_Resource A request for endpoint execution has been submitted to the Resource
Advisor component and the job is waiting for notification and
assignment of execution resources.

Canceled The submitting user may canceled the job at any stage of execution life
cycle.

Resource_Received The Resource Advisor returned the target execution resources.

Submitted_to_Endpoint The requested job is submitted to the target execution endpoint.

Resource_Reallocate The Job Dispatcher decides to return the endpoint to the Resource
Advisor and request a new endpoint because the submission to the
current endpoint failed due to a connection error.

Executing The Job Executor on the target endpoint started job execution.

Pending_cancel The Job Dispatcher sent the cancel request to the job executor and
waits for the feedback of the actual cancellation.

Failed_Execution The executing job returned a failure (return code not equal to 0).

Succeeded_Execution The job successfully completed execution at the endpoint.

Unable_to_start The job cannot be started due to authentication, path problems.

Cancel_allocation The Job Dispatcher received the cancellation feedback from the
endpoint and requested the resource allocation cancellation to the
Resource Advisor.

Job_unknown The job state returned by the agent to the server if the agent was not
able to find the status of the actual job.

Allocation_Failed The Resource advisor cannot find any available resource matching the
job requirements.

402 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Figure 9-2 displays the possible operations provided by the Tivoli Dynamic
Workload Broker through the Web services interface.

Figure 9-2 Possible client interactions with Tivoli Dynamic Workload Broker jobs

9.4 Web services interfaces provided by the Tivoli
Dynamic Workload Broker server

In this section we describe the services and operations provided by the Tivoli
Dynamic Workload Broker server.

 Chapter 9. Interacting with Tivoli Dynamic Workload Broker using the Web services interface 403

We focus on the following actions that can be done by invoking the Tivoli
Dynamic Workload Broker Web services:

� Job Factory Service
– Submitting jobs
– Querying job

� Job Service
– Cancelling jobs
– Getting job properties
– Getting job output

� Job Definition Management Service
– Adding job definitions
– Modifying job definitions
– Deleting job definitions
– Querying job definitions

9.4.1 How to read this section

The following content describes the Web services interface provided with the
Tivoli Dynamic Workload Broker. We create a special section for each Web
Service (Job Factory, Job, and Job Definition Management Service). Each of
these sections is divided into subsections, which contain the description of
operations of a particular Web Service and also a response to that operation, if
available.

In each section we first provide:

� Short description of the Web Service itself
� Extract from the WSDL file describing the Web Service with its operations

In each corresponding subsection we provide:

� Extract from the WSDL file describing the type definitions for the particular
operations (if available; some operations do not take arguments)

� Extract from the WSDL file describing the type definitions for response to the
invocation of the specific operation (if available; some operations do not have
a response)

The type definitions of particular operations are in fact the parameters
(arguments) that you will pass to the methods, when writing your program.
The type definitions describe what method uses which parameters, when
invoked in your program.

The type definitions of responses to particular operations are the parameters
that come back with the response.

404 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

All the WSDL extracts originate from the corresponding WSDL files. They are:

� Job Factory Service - JobFactory.wsdl
� Job Service - Job.wsdl
� Job Management Definition Service - JobDefinitionMgmt.wsdl

9.4.2 Job Factory service

In this section we describe the JobFactory service. This service provides
following functionality:

� Submitting jobs
� Querying job status

Example 9-1 contains the extract from the JobFactory.wsdl file. You can see all of
the operations defined with this Web Service.

Example 9-1 JobFactory Web Service and its operations for submitting and querying jobs

<wsdl:portType name="JobFactory">

 <wsdl:operation name="submitJobFromJSDL">
<wsdl:input name="SubmitJobFromJSDLRequest"

message="jmjf:SubmitJobFromJSDLRequestMessage" />
<wsdl:output name="SubmitJobFromJSDLResponse"

message="jmjf:SubmitJobFromJSDLResponseMessage" />
<wsdl:fault name="OperationFailedFault"

message="jmjf:OperationFailedFaultMessage" />
<wsdl:fault name="InvalidArgumentsFault"

message="jmjf:InvalidArgumentsFaultMessage" />
<wsdl:fault name="ServiceUnavailableFault"

message="jmjf:ServiceUnavailableFaultMessage"/>
</wsdl:operation>

 <wsdl:operation name="submitJobFromName">
<wsdl:input name="SubmitJobFromNameRequest"

message="jmjf:SubmitJobFromNameRequestMessage" />
<wsdl:output name="SubmitJobFromNameResponse"

message="jmjf:SubmitJobFromNameResponseMessage" />
<wsdl:fault name="OperationFailedFault"

message="jmjf:OperationFailedFaultMessage" />
<wsdl:fault name="InvalidArgumentsFault"

message="jmjf:InvalidArgumentsFaultMessage" />

Note: Some type definitions may include elements for variables and
affinity. The description of variables and job affinity is included in 9.4.5,
“Important terms related to job definitions” on page 430.

 Chapter 9. Interacting with Tivoli Dynamic Workload Broker using the Web services interface 405

<wsdl:fault name="ServiceUnavailableFault"
message="jmjf:ServiceUnavailableFaultMessage"/>

</wsdl:operation>

<wsdl:operation name="queryJobs">
<wsdl:input name="QueryJobsRequest" message="jmjf:QueryJobsRequestMessage" />
<wsdl:output name="QueryJobsResponse" message="jmjf:QueryJobsResponseMessage"

/>
<wsdl:fault name="OperationFailedFault"

message="jmjf:OperationFailedFaultMessage" />
<wsdl:fault name="InvalidArgumentsFault"

message="jmjf:InvalidArgumentsFaultMessage" />
<wsdl:fault name="ServiceUnavailableFault"

message="jmjf:ServiceUnavailableFaultMessage"/>
</wsdl:operation>

</wsdl:portType>

<wsdl:service name="JobFactoryService">
<wsdl:port binding="jmjf:JobFactoryBinding" name="JobFactory">

<wsdlsoap:address location="http://localhost:9080/JobWS/services/JobFactory" />
</wsdl:port>

</wsdl:service>

Submitting jobs
In this subsection we describe the operations of the Job Factory Web Service
that can be used for job submission.

There are two possible ways to submit a job:

� Submit a job from the definition stored in the Job Repository.

� Submit a job from the definition originating on the client side (either read from
the JSDL file or created by the client application).

The submit operations return a Job EndPointReference (EPR) containing a Job
Handle Unique ID. The Job EPR is used for all subsequent Job Service
operations (like cancelling the job, getting job properties, and getting job output).

406 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Submitting a job to the server can be either successful or unsuccessful. The
reasons why the job submission may not succeed are:

� Submission fails to pass security checks.

� JSDL validation against schema was not successful (JSDL document is not
valid).

� Incorrect variable substitution was performed.

In all of the cases listed above, the attempt to submit a job will return a fault.

Job executions are processed asynchronously. Return is made to the service
client before the asynchronous processing is started. Job execution status will be
sent to the client through the JobNotify service (as shown in Figure 9-1 on
page 401). The description of the JobNotify service and corresponding details is
included in 9.4.6, “Getting notified about job state changes” on page 431.

Now we describe the operations defined with the JobFactory service.

SubmitJobFromJSDL
Example 9-2 contains the type definitions for the submitJobFromJSDL operation.
The client application must have a reference to the object with the JSDL
definition available when invoking this Web service. The object containing the
definition is constructed by application logic — either by reading from the JSDL
file, or by creating the definition on-the-fly. In order to create the object containing
the job definition it is necessary to create the JSDL document root structure first
and then add all of the nested elements to that structure.

Example 9-2 Type definitions for submitJobFrom JSDL operation

<xsd:element name="submitJobFromJSDL">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="JobDefinitionDocument" minOccurs="1" maxOccurs="1">

 <xsd:complexType>
 <xsd:sequence>

<xsd:element ref="jsdl:jobDefinition" minOccurs="1"
maxOccurs="1"/>

 </xsd:sequence>
 </xsd:complexType>

</xsd:element>
<xsd:element name="Alias" type="xsd:string" minOccurs="0" maxOccurs="1" />
<xsd:element name="ClientNotifyEPR" type="wsa:EndpointReferenceType"
minOccurs="0" maxOccurs="1" />
<xsd:element name="Variable" type="jmjf:VariableType" minOccurs="0"
maxOccurs="unbounded"/>
<xsd:element name="Affinity" type="jmjf:AffinityType" minOccurs="0"
maxOccurs="1" />

 Chapter 9. Interacting with Tivoli Dynamic Workload Broker using the Web services interface 407

<xsd:element name="SubmitterType" type="xsd:string" minOccurs="0"
maxOccurs="1" />

</xsd:sequence>
<xsd:anyAttribute />

</xsd:complexType>
</xsd:element>

The SubmitJobFromJSDL consists of:

� Job definition document - contains the JSDL of the job to be executed.

� Alias - alias of the job to which the submitting job should be affine.

� Client Notification EndpointReferenceType - address of the client
implementing the Notify Web service described later. Messages about job
state changes are delivered to the client that wants to be notified. Such a
client (implementing the Notify Web Service) should be up and running at this
address. In case the client is not available, the Tivoli Dynamic Workload
Broker server will retry sending the notification of the latest status change
until an interval specified in the Job Dispatcher expires.

� Variable - the run-time variables.

� Affinity - the job affinity specifications.

� SubmitterType - any string identifying the type of submitter (for instance
WebUI, CLI, API, MyApp, and so on).

SubmitJobFromJSDLResponse
Example 9-3 contains the type definitions for the response to the
submitJobFromJSDL operation.

Example 9-3 Type definitions for response to submitJobFromFile operation

<xsd:element name="submitJobFromJSDLResponse">
<xsd:complexType>

<xsd:sequence>
<xsd:elementname="JobEPR"type="wsa:EndpointReferenceType"minOccurs="1"
maxOccurs="1" />
</xsd:sequence>

<xsd:anyAttribute />
</xsd:complexType>

</xsd:element>

The SubmitJobFromJSDLResponse consists of the job EndpointReferenceType,
the EndpointReferenceType of the job just created through the submission. Any
subsequent operation like cancel, get job properties, and get job output should
be made on this address because this address contains the job ID in the
reference properties.

408 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

SubmitJobFromName
Example 9-4 contains the type definitions for the submitJobFromName
operation. The job definition of the desired job must be stored in the job
repository prior to invoking this operation.

Example 9-4 Type definitions for submitJobFromName operation

<xsd:element name="submitJobFromName">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="JobDefinitionName" type="xsd:QName" minOccurs="1"
maxOccurs="1" />
<xsd:element name="Alias" type="xsd:string"minOccurs="0"maxOccurs="1"/>
<xsd:element name="ClientNotifyEPR" nillable="true"
type="wsa:EndpointReferenceType"minOccurs="0" maxOccurs="1" />
<xsd:element name="Variable" type="jmjf:VariableType" minOccurs="0"
maxOccurs="unbounded" />
<xsd:element name="Affinity" type="jmjf:AffinityType" minOccurs="0"
maxOccurs="1" />
<xsd:element name="SubmitterType" type="xsd:string" minOccurs="0"
maxOccurs="1" />

</xsd:sequence>
<xsd:anyAttribute />

</xsd:complexType>
</xsd:element>

The SubmitJobFromName consists of:

� Job Definition Name - contains the name of the job definition to be executed.
The job definition must already be stored in the job repository.

� Alias - alias of the job to which the submitting job should be affine.

� Client Notification EndpointReferenceType - address of the client
implementing the Notify Web service described later on. Messages about job
state changes are delivered to the client that wants to be notified. Such a
client (implementing the Notify Web service) should be up and running at this
address. In case the client is not available, the Tivoli Dynamic Workload
Broker server retrys sending the notification of the latest status change until
an interval specified in the Job Dispatcher expires.

� Variable - the run-time variables.

� Affinity - the job affinity specifications.

� SubmitterType - any string identifying the type of submitter (for instance,
WebUI, CLI, API, MyApp, and so on).

 Chapter 9. Interacting with Tivoli Dynamic Workload Broker using the Web services interface 409

SubmitJobFromNameResponse
Example 9-5 contains the type definitions for the response to the
submitFromName operation.

Example 9-5 Type definitions for response to submitJobFromName operation

<xsd:element name="submitJobFromNameResponse">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="JobEPR" nillable="false"

type="wsa:EndpointReferenceType" minOccurs="1" maxOccurs="1" />
</xsd:sequence>
<xsd:anyAttribute />

</xsd:complexType>
</xsd:element>

The SubmitJobFromNameResponse consists of the job EndpointReferenceType,
the EndpointReferenceType of the job just created through the submission. Any
subsequent operation like cancel, get job properties, and get job output should
be made on this address that contains the job ID in the reference properties.

SubmitJobFromJSDLXml
Example 9-6 contains the type definitions for the submitJobFromName
operation. The job definition of the desired job must be available to the
application as a string object prior to invoking this operation. The string object
can be constructed in any way, for instance, by reading the content of a JSDL file
into the StringBuffer instance and then retyping it to string.

Example 9-6 Type definitions for submitJobFromJSDLXml operation

<xsd:element name="submitJobFromJSDLXml">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="JobDefinitionDocument" type="xsd:string" minOccurs="1"

maxOccurs="1" />
<xsd:element name="Alias" type="xsd:string" minOccurs="0" maxOccurs="1" />
<xsd:element name="ClientNotifyEPR" type="wsa:EndpointReferenceType" minOccurs="0"

maxOccurs="1" />
<xsd:element name="Variable" type="jmjf:VariableType" minOccurs="0"

maxOccurs="unbounded" />
<xsd:element name="Affinity" type="jmjf:AffinityType" minOccurs="0" maxOccurs="1" />
<xsd:element name="SubmitterType" type="xsd:string" minOccurs="0" maxOccurs="1" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>

410 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

The SubmitJobFromJSDLXml consists of:

� Job Definition Document - the reference to the string object containing the
JSDL definition.

� Alias - alias of the job to which the submitting job should be affine.

� Client Notification EndpointReferenceType - address of the client
implementing the Notify Web service described later. Messages about the job
state changes are delivered to the client that wants to be notified. Such a
client (implementing the Notify Web service) should be up and running at this
address. In case the client is not available, the Tivoli Dynamic Workload
Broker server retrys sending the notification oflatest status change, until an
interval specified in the Job Dispatcher expires.

� Variable - the run-time variables.

� Affinity - the job affinity specifications.

� SubmitterType - any string identifying the type of submitter (for instance,
WebUI, CLI, API, MyApp, and so on).

SubmitJobFromJSDLXmlResponse
Example 9-7 contains the type definitions for the response to the
submitFromJSDLXml operation.

Example 9-7 Type definitions for response to submitJobFromJSDLXml operation

<xsd:element name="submitJobFromJSDLXmlResponse">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="JobEPR" type="wsa:EndpointReferenceType" minOccurs="1"

maxOccurs="1" />
</xsd:sequence>

</xsd:complexType>
</xsd:element>

The SubmitJobFromJSDLXmlResponse consists of the job
EndpointReferenceType, the EndpointReferenceType of the job just created
through the submission. Any subsequent operation like cancel, get job
properties, and get job output should be made on this address that contains the
job ID in the reference properties.

Querying jobs
In this section we describe the operations for querying the jobs submitted to
Tivoli Dynamic Workload Broker server.

The query interface accepts a certain number of filters on job attributes. Some of
the filters accept wildcards such as an asterisk (*) and a question mark (?). The

 Chapter 9. Interacting with Tivoli Dynamic Workload Broker using the Web services interface 411

query operation returns the set of the jobs matching the filter criteria passed as
input.

QueryJobs
Example 9-8 contains the type definitions for the queryJobs operation.

Example 9-8 Type definitions for queryJobs operation

<xsd:element name="queryJobs">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="NameFilter" type="xsd:string" minOccurs="0"
maxOccurs="1" />
<xsd:element name="TargetNamespaceFilter"
type="xsd:string"minOccurs="0"maxOccurs="1" />
<xsd:element name="AliasFilter" type="xsd:string" minOccurs="0"
maxOccurs="1" />
<xsd:element name="StateFilter" minOccurs="0" maxOccurs="1" >

<xsd:complexType>
<xsd:sequence>

<xsd:element name="State" type="jmt:JobStateEnumeration"
minOccurs="1" maxOccurs="unbounded" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name="TargetResourceFilter" type="xsd:string"
minOccurs="0" maxOccurs="1" />

<xsd:element name="SubmitterFilter" type="xsd:string" minOccurs="0"
maxOccurs="1" />
<xsd:element name="SubmitTimeFilter" minOccurs="0" maxOccurs="1" >

<xsd:complexType>
<xsd:sequence>

<xsd:element name="From" type="xsd:dateTime"
minOccurs="0" maxOccurs="1" />
<xsd:element name="To" type="xsd:dateTime"
minOccurs="0" maxOccurs="1" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name="StartTimeFilter" minOccurs="0" maxOccurs="1" >

<xsd:complexType><xsd:sequence>
<xsd:element name="From" type="xsd:dateTime"
minOccurs="0" maxOccurs="1" />
<xsd:element name="To" type="xsd:dateTime" minOccurs="0"
maxOccurs="1" />

</xsd:sequence></xsd:complexType>
</xsd:element>
<xsd:element name="EndTimeFilter" minOccurs="0" maxOccurs="1" >

412 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

<xsd:complexType><xsd:sequence>
<xsd:element name="From" type="xsd:dateTime"
minOccurs="0" maxOccurs="1" />
<xsd:element name="To" type="xsd:dateTime" minOccurs="0"
maxOccurs="1" />

</xsd:sequence></xsd:complexType>
</xsd:element>
<xsd:element name="HowMany" type="xsd:int" minOccurs="0"
maxOccurs="1" />
<xsd:element name="Iterator" type="xsd:string" minOccurs="0"
maxOccurs="1" />

</xsd:sequence>
<xsd:anyAttribute />

</xsd:complexType>
</xsd:element>

The QueryJobs consists of:

� Name filter - the filter on job names. This filter supports wildcards.

� Target Namespace Filter - the filter on job target namespaces. This filter
supports wildcards. This is not supported in the Tivoli Dynamic Workload
Broker V1.2 and earlier.

� Alias filter - the filter on job alias. This filter supports wildcards.

� State filter - filter on job state. It can be one of the following:

– SUBMITTED
– WAITING_FOR_RESOURCES
– RESOURCE_ALLOCATION_RECEIVED
– RESOURCE_ALLOCATION_FAILED
– SUBMITTED_TO_ENDPOINT
– PENDING_CANCEL
– CANCEL_ALLOCATION
– RESOURCE_REALLOCATE
– EXECUTING
– FAILED_EXECUTION
– SUCCEEDED_EXECUTION
– NOT_EXECUTED
– CANCELLED
– UNKNOWN

� Target Resource Filter - This filter matches all jobs executed on the specified
resource display name.

� Submitter Filter - This filter matches all job submitted by the specified
submitter. This filter supports wildcards.

 Chapter 9. Interacting with Tivoli Dynamic Workload Broker using the Web services interface 413

� Submit time filter - This filter matches all jobs submitted to Tivoli Dynamic
Workload Broker server in the specified range.

� Start time filter - This filter matches all jobs started on the endpoint in the
specified range.

� End time filter - This filter matches all jobs ended on the endpoint in the
specified range.

� HowMany - This is the number of maximum jobs that the query should return
in one invocation. Note that if the number of jobs matching the filter criteria is
greater that this number then an iterator is returned and it can be used to
retrieve all other jobs not returned.

� Iterator - This is an identifier used by the Tivoli Dynamic Workload Broker
server to query the remaining jobs matching the criteria and exceeding the
HowMany parameter.

QueryJobsProperties
Example 9-9 describes all job attributes returned by the query operation.

Example 9-9 Type definitions for queryJobProperties - response to queryJobs operation

<xsd:complexType name="QueryJobPropertiesType">
<xsd:sequence>

<xsd:element name="JobEPR" type="wsa:EndpointReferenceType" minOccurs="1"
maxOccurs="1" />
<xsd:element name="Name" type="xsd:QName" minOccurs="1" maxOccurs="1" />
<xsd:element name="Alias" type="xsd:string" minOccurs="0" maxOccurs="1" />
<xsd:element name="Submitter" type="xsd:string" minOccurs="0" maxOccurs="1" />
<xsd:element name="SubmitterType" type="xsd:string" minOccurs="0" maxOccurs="1" />
<xsd:element name="State" type="jmt:JobStateEnumeration" minOccurs="1"
maxOccurs="1" />
<xsd:element name="LastStatusMessage" type="xsd:string" minOccurs="0"
maxOccurs="1" />
<xsd:element name="SubmittedTime" type="xsd:dateTime" minOccurs="0"
maxOccurs="1" />
<xsd:element name="StartTime" type="xsd:dateTime" minOccurs="0" maxOccurs="1" />
<xsd:element name="EndTime" type="xsd:dateTime" minOccurs="0" maxOccurs="1" />
<xsd:element name="Duration" type="xsd:duration" minOccurs="0" maxOccurs="1" />
<xsd:element name="ReturnCode" type="xsd:integer" minOccurs="0" maxOccurs="1" />
<xsd:element name="TargetResource" type="rmt:ResourceGroup" minOccurs="0"
maxOccurs="unbounded" />

</xsd:sequence>
</xsd:complexType>

414 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

The QueryJobsProperties consists of:

� Name - the job name.
� Alias - the job alias.
� Submitter - the job submitter.
� Submitter type - the job submitter type.
� State - job state.
� Last status message - the last diagnostic message received for the job.
� Submitted time - job submit time.
� Start time - the job start time.
� End time - the job end time.
� Duration - the duration of job from start to end time.
� Return code - the job return code. Valid only for native jobs.
� Target resource - the target group of resources matching the requirements.

QueryJobsResponse
Example 9-10 contains the type definitions for all parameters returned by the
query operation. The QueryJobsResponse consists of:

� Job Properties - the set of jobs matching the filter criteria

� Iterator - the iterator to be used in case there are more jobs matching the
requirements than requested with HowMany

Example 9-10 Type definitions for response to queryJobProperties operation

<xsd:element name="queryJobsResponse">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="JobProperties" type="jmjf:QueryJobPropertiesType"
minOccurs="0" maxOccurs="unbounded" />
<xsd:element name="Iterator" type="xsd:string" minOccurs="0"
maxOccurs="1" />

</xsd:sequence>
<xsd:anyAttribute />

</xsd:complexType>
</xsd:element>

 Chapter 9. Interacting with Tivoli Dynamic Workload Broker using the Web services interface 415

9.4.3 Job service

In this section we describe the job service. This service provides the following
functionality:

� Cancelling jobs
� Getting job properties
� Getting the job output

Example 9-11 contains the extract from the JobFactory.wsdl file. You can see all
of the operations defined with this Web Service.

Example 9-11 Job Web service and its operations for submitting and querying jobs

<wsdl:portType name="Job">

<wsdl:operation name="cancel">
<wsdl:input name="CancelRequest" message="jmj:CancelRequestMessage" />
<wsdl:output name="CancelResponse" message="jmj:CancelResponseMessage" />
<wsdl:fault name="OperationFailedFault" message="jmj:OperationFailedFaultMessage" />
<wsdl:fault name="InvalidArgumentsFault" message="jmj:InvalidArgumentsFaultMessage" />
<wsdl:fault name="UnknownResourceFault" message="jmj:UnknownResourceFaultMessage" />
<wsdl:fault name="IllegalStateFault" message="jmj:IllegalStateFaultMessage" />
<wsdl:fault name="ServiceUnavailableFault" message="jmj:ServiceUnavailableFaultMessage"

/>
<wsdl:fault name="UnsupportedOperationFault"

message="jmj:UnsupportedOperationFaultMessage" />
</wsdl:operation>

<wsdl:operation name="getProperties">
<wsdl:input name="GetPropertiesRequest" message="jmj:GetPropertiesRequestMessage" />
<wsdl:output name="GetPropertiesResponse" message="jmj:GetPropertiesResponseMessage" />
<wsdl:fault name="OperationFailedFault" message="jmj:OperationFailedFaultMessage" />
<wsdl:fault name="InvalidArgumentsFault" message="jmj:InvalidArgumentsFaultMessage" />
<wsdl:fault name="UnknownResourceFault" message="jmj:UnknownResourceFaultMessage" />
<wsdl:fault name="IllegalStateFault" message="jmj:IllegalStateFaultMessage" />
<wsdl:fault name="ServiceUnavailableFault" message="jmj:ServiceUnavailableFaultMessage"

/>
</wsdl:operation>

<wsdl:operation name="getExecutionLogPage">
<wsdl:input name="GetExecutionLogPageRequest"

message="jmj:GetExecutionLogPageRequestMessage" />
<wsdl:output name="GetExecutionLogPageResponse

"message="jmj:GetExecutionLogPageResponseMessage" />
<wsdl:fault name="OperationFailedFault" message="jmj:OperationFailedFaultMessage" />
<wsdl:fault name="InvalidArgumentsFault" message="jmj:InvalidArgumentsFaultMessage" />
<wsdl:fault name="UnknownResourceFault" message="jmj:UnknownResourceFaultMessage" />
<wsdl:fault name="IllegalStateFault" message="jmj:IllegalStateFaultMessage" />

416 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

<wsdl:fault name="ServiceUnavailableFault" message="jmj:ServiceUnavailableFaultMessage"
/>

</wsdl:operation>

</wsdl:portType>

<wsdl:service name="JobFactoryService">
<wsdl:port binding="jmjf:JobFactoryBinding" name="JobFactory">

<wsdlsoap:address
location="http://localhost:9080/JobServiceWS/services/JobFactory" />

</wsdl:port>
</wsdl:service>

Canceling jobs
In this section we describe the operation for cancelling the jobs submitted to
Tivoli Dynamic Workload Broker server.

The cancel interface allows us to stop the execution of a running job or to block
the process of allocating the matching resources for a job that was not launched
yet. This operation is asynchronous: it just verifies if the job identifier exists and
then sends a cancel request to the appropriate Tivoli Dynamic Workload Broker
component.

The cancel operation must be invoked on the address contained in the Job
EndpointReferenceType (EPR) returned back from the submit operation
(submitJobFromName, submitJobFromJSDL, submitJobFromJSDLXml). The job
EPR also contains the job identifier as a reference property named "jobIdentifier"
that should set in the SOAP header when invoking this operation.

Cancel
As stated above, it is important that you invoke this operation on the address
contained in the job’s EPR. Additional parameters are not needed. When you
invoke nthe cancel operation in your application, you must invoke it on the correct
EPR instance, and you do not provide the cancel method with any argument.

This is the reason that we do not provide type definitions for the cancel operation.

There is also no response to the cancel operation. This is the reason that we do
not provide type definitions for response to the cancel operation.

Getting job properties
In this section we describe the operation for getting the properties of jobs
submitted to the Tivoli Dynamic Workload Broker server.

 Chapter 9. Interacting with Tivoli Dynamic Workload Broker using the Web services interface 417

The getProperties interface allows you to get the properties of a submitted job.
The getProperties operation must be invoked on the address in the job
EndpointReferenceType (EPR) returned back from jobSubmit. The job EPR also
contains the job identifier as reference property named “jobIdentifier” that should
be set in the SOAP header when invoking this operation.

GetProperties
As stated above, it is important for you to invoke this operation on the address
contained in the job’s EPR. Additional parameters are not needed. When you
invoke the getProperties operation in your application, you must invoke it on the
correct EPR instance, and you will not provide the getProperties method with any
argument.

This is the reason that we do not provide type definitions for the getProperites
operation.

GetPropertiesResponse
Example 9-12 contains the type definitions for the queryJobs operation.

Example 9-12 Type definitions for response to getProperties operation

<xsd:element name="getPropertiesResponse">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="Name" type="xsd:QName" minOccurs="1" maxOccurs="1" />
<xsd:element name="Alias" type="xsd:string" minOccurs="0" maxOccurs="1" />
<xsd:element name="Submitter" type="xsd:string" minOccurs="0"
maxOccurs="1" />
<xsd:element name="SubmitterType" type="xsd:string" minOccurs="0"
maxOccurs="1" />
<xsd:element name="ClientNotifyEPR" type="wsa:EndpointReferenceType"
minOccurs="0" maxOccurs="1" />
<xsd:element name="JobDefinitionDocument" minOccurs="1" maxOccurs="1">

<xsd:complexType><xsd:sequence>
<xsd:element ref="jsdl:jobDefinition" minOccurs="1"
maxOccurs="1" />

</xsd:sequence></xsd:complexType>
</xsd:element>
<xsd:element name="State" type="jmt:JobStateEnumeration" minOccurs="1"
maxOccurs="1" />
<xsd:element name="LastStatusMessage" type="xsd:string" minOccurs="0"
maxOccurs="1" />
<xsd:element name="SubmittedTime" type="xsd:dateTime" minOccurs="1"
maxOccurs="1" />
<xsd:element name="StartTime" type="xsd:dateTime" minOccurs="0"
maxOccurs="1" />
<xsd:element name="EndTime" type="xsd:dateTime" minOccurs="0"
maxOccurs="1" />

418 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

<xsd:element name="Duration" type="xsd:duration" minOccurs="0"
maxOccurs="1" />
<xsd:element name="ReturnCode" nillable="true" type="xsd:integer"
minOccurs="0" maxOccurs="1" />
<xsd:element name="TargetResource" type="rmt:ResourceGroup" minOccurs="0"
maxOccurs="unbounded" />
<xsd:element name="Metric" type="jmt:JobUsageMetricsType" minOccurs="0"
maxOccurs="unbounded" />

</xsd:sequence>
<xsd:anyAttribute />

</xsd:complexType>
</xsd:element>

The GetPropertiesResponse consists of:

� Name - the job name.

� Alias - the job alias.

� Submitter - the job submitter.

� Submitter type - the job submitter type.

� Client notification EndpointReferenceType - the address of the client
implementing the notify Web service passed in the submitJob.

� Job definition document - the JSDL passed in the submitJob with all variables
replaced.

� State - the job state.

� Last status message - the last diagnostic message received for the job.

� Submitted time - the job submit time.

� Start time - the job start time.

� End time - the job end time.

� Duration - the duration of the job from start to end time.

� Return code - the job return code. This is valid only for native.

� Target resource - the target group of resources matching the requirements.

� Metric - a set of metrics (CPU used and Max memory) about resource
consumed by the native jobs.

Getting the job output
In this section we describe the operation for getting the output of jobs submitted
to the Tivoli Dynamic Workload Broker server.

The getExecutionLogPage operation gets the execution log from the endpoint
where the job has been dispatched. The getExecutionLogPage operation must

 Chapter 9. Interacting with Tivoli Dynamic Workload Broker using the Web services interface 419

be invoked on the address contained in the Job EndpointReferenceType (EPR)
returned back from jobSubmit. The job EPR also contains the job identifier as a
reference property named "jobIdentifier" that should be set in the SOAP header
when invoking this operation.

GetExecutionLogPage
Example 9-13 contains the type definitions for the getExecutionLogPage
operation.

Example 9-13 Type definitions for getExecutionLogPage operation

<xsd:element name="getExecutionLogPage">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="Offset" type="xsd:long" minOccurs="1" maxOccurs="1" />
<xsd:element name="BlockSize" type="xsd:int" minOccurs="1" maxOccurs="1" />

</xsd:sequence>
<xsd:anyAttribute />

</xsd:complexType>
</xsd:element>

The GetExecutionLogPage type consists of:

� Offset - the starting offset of the requested page. For the first page 0 should
be specified. If the log to be returned is greater than the requested BlockSize
then the operation must be called as many times as necessary until the offset
goes over the file size. Any subsequent call should specify the offset on based
BlockSize and FileSize.

� BlockSize - the size in bytes of the requested log page.

GetExecutionLogPageResponse
Example 9-14 contains the type definitions for the getExecutionLogPage
operation.

Example 9-14 Type definitions for response to getExecutionLogPage operation

<xsd:element name="getExecutionLogPageResponse">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="LogPage" type="xsd:string" minOccurs="0" maxOccurs="1" />
<xsd:element name="FileSize" type="xsd:long" minOccurs="1" maxOccurs="1" />

</xsd:sequence>
<xsd:anyAttribute />

</xsd:complexType>
</xsd:element>

420 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

The GetExecutionLogPage type consists of:

� LogPage: the page starting from the requested offset and with the given block
size.

� FileSize: the size in bytes of the entire log. It may differ call by call, because
the job may produce more rows in the meantime.

9.4.4 Job Definition Management service

In this section we describe the Job Definition Management service. This service
provides the following functionality:

� Adding the job definitions
� Modifying the job definitions
� Deleting the job definitions
� Querying the job definitions

Example 9-15 contains the extract from the JobDefinitionMgmt.wsdl file. You can
see all of the operations defined with this Web service.

Example 9-15 Job Definition Management Service and its operations for working with job definitions

<wsdl:portType name="JobDefinitionManagement">

<wsdl:operation name="addJobDefinition">
<wsdl:input name="AddJobDefinitionRequest" message="jdm:AddJobDefinitionRequestMessage"

/>
<wsdl:output name="AddJobDefinitionResponse"

message="jdm:AddJobDefinitionResponseMessage" />
<wsdl:fault name="OperationFailedFault" message="jdm:OperationFailedFaultMessage" />
<wsdl:fault name="InvalidArgumentsFault" message="jdm:InvalidArgumentsFaultMessage" />
<wsdl:fault name="ServiceUnavailableFault" message="jdm:ServiceUnavailableFaultMessage"

/>
</wsdl:operation>

<wsdl:operation name="addJobDefinitionXml">
<wsdl:input name="AddJobDefinitionXmlRequest"

message="jdm:AddJobDefinitionXmlRequestMessage" />
<wsdl:output name="AddJobDefinitionXmlResponse"

message="jdm:AddJobDefinitionXmlResponseMessage" />
<wsdl:fault name="OperationFailedFault" message="jdm:OperationFailedFaultMessage" />
<wsdl:fault name="InvalidArgumentsFault" message="jdm:InvalidArgumentsFaultMessage" />
<wsdl:fault name="ServiceUnavailableFault" message="jdm:ServiceUnavailableFaultMessage"

/>
</wsdl:operation>

<wsdl:operation name="setJobDefinition">

 Chapter 9. Interacting with Tivoli Dynamic Workload Broker using the Web services interface 421

<wsdl:input name="SetJobDefinitionRequest" message="jdm:SetJobDefinitionRequestMessage"
/>

<wsdl:output name="SetJobDefinitionResponse"
message="jdm:SetJobDefinitionResponseMessage" />

<wsdl:fault name="OperationFailedFault" message="jdm:OperationFailedFaultMessage" />
<wsdl:fault name="InvalidArgumentsFault" message="jdm:InvalidArgumentsFaultMessage" />
<wsdl:fault name="ServiceUnavailableFault" message="jdm:ServiceUnavailableFaultMessage"

/>
</wsdl:operation>

<wsdl:operation name="setJobDefinitionXml">
<wsdl:input name="SetJobDefinitionXmlRequest"

message="jdm:SetJobDefinitionXmlRequestMessage" />
<wsdl:output name="SetJobDefinitionXmlResponse"

message="jdm:SetJobDefinitionXmlResponseMessage" />
<wsdl:fault name="OperationFailedFault" message="jdm:OperationFailedFaultMessage" />
<wsdl:fault name="InvalidArgumentsFault" message="jdm:InvalidArgumentsFaultMessage" />
<wsdl:fault name="ServiceUnavailableFault" message="jdm:ServiceUnavailableFaultMessage"

/>
</wsdl:operation>

<wsdl:operation name="getJobDefinition">
<wsdl:input name="GetJobDefinitionRequest" message="jdm:GetJobDefinitionRequestMessage"

/>
<wsdl:output name="GetJobDefinitionResponse"

message="jdm:GetJobDefinitionResponseMessage" />
<wsdl:fault name="UnknownResourceFault" message="jdm:UnknownResourceFaultMessage" />
<wsdl:fault name="OperationFailedFault" message="jdm:OperationFailedFaultMessage" />
<wsdl:fault name="InvalidArgumentsFault" message="jdm:InvalidArgumentsFaultMessage" />
<wsdl:fault name="ServiceUnavailableFault" message="jdm:ServiceUnavailableFaultMessage"

/>
</wsdl:operation>

<wsdl:operation name="getJobDefinitionXml">
<wsdl:input name="GetJobDefinitionXmlRequest"

message="jdm:GetJobDefinitionXmlRequestMessage" />
<wsdl:output name="GetJobDefinitionXmlResponse"

message="jdm:GetJobDefinitionXmlResponseMessage" />
<wsdl:fault name="UnknownResourceFault" message="jdm:UnknownResourceFaultMessage" />
<wsdl:fault name="OperationFailedFault" message="jdm:OperationFailedFaultMessage" />
<wsdl:fault name="InvalidArgumentsFault" message="jdm:InvalidArgumentsFaultMessage" />
<wsdl:fault name="ServiceUnavailableFault" message="jdm:ServiceUnavailableFaultMessage"

/>
</wsdl:operation>

<wsdl:operation name="deleteJobDefinition">
<wsdl:input name="DeleteJobDefinitionRequest"

message="jdm:DeleteJobDefinitionRequestMessage" />

422 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

<wsdl:output name="DeleteJobDefinitionResponse"
message="jdm:DeleteJobDefinitionResponseMessage" />

<wsdl:fault name="UnknownResourceFault" message="jdm:UnknownResourceFaultMessage" />
<wsdl:fault name="OperationFailedFault" message="jdm:OperationFailedFaultMessage" />
<wsdl:fault name="InvalidArgumentsFault" message="jdm:InvalidArgumentsFaultMessage" />
<wsdl:fault name="ServiceUnavailableFault" message="jdm:ServiceUnavailableFaultMessage"

/>
</wsdl:operation>

<wsdl:operation name="queryJobDefinitions">
<wsdl:input name="QueryJobDefinitionsRequest"

message="jdm:QueryJobDefinitionsRequestMessage" />
<wsdl:output name="QueryJobDefinitionsResponse"

message="jdm:QueryJobDefinitionsResponseMessage" />
<wsdl:fault name="OperationFailedFault" message="jdm:OperationFailedFaultMessage" />
<wsdl:fault name="InvalidArgumentsFault" message="jdm:InvalidArgumentsFaultMessage" />
<wsdl:fault name="ServiceUnavailableFault" message="jdm:ServiceUnavailableFaultMessage"

/>
</wsdl:operation>

</wsdl:portType>

<wsdl:service name="JobDefinitionManagementService">
<wsdl:port binding="jdm:JobDefinitionManagementBinding" name="JobDefinitionManagement">

<wsdlsoap:address location="http://localhost:9080/JobStoreWS/services/JobStore" />
</wsdl:port>

</wsdl:service>

Adding the job definitions
In this section we describe the operations for adding the job definitions.

The addJobDefinition operation saves a given job definition in the server job
repository. Saved job definitions can be referenced using the
submitJobFromName operation.

 Chapter 9. Interacting with Tivoli Dynamic Workload Broker using the Web services interface 423

AddJobDefinition
Example 9-16 contains the type definitions for the addJobDefinition operation.

Example 9-16 Type definitions for addJobDefinition operation

<xsd:element name="addJobDefinition">
<xsd:complexType>

<xsd:sequence>
<xsd:elementname="JobDefinition"type="
jsdl:JobDefinitionType" minOccurs="1" maxOccurs="1" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>

The AddJobDefinition type consists of JobDefinition, the job definition to be
saved.

AddJobDefinitionResponse
Example 9-17 contains the type definitions for the response to the
addJobDefinition operation.

Example 9-17 Type definitions for response to addJobDefinition operation

<xsd:element name="addJobDefinitionResponse">
<xsd:complexType>

<xsd:sequence />
</xsd:complexType>

</xsd:element>

Updating the job definitions
In this section we describe the operations for updating the job definitions.

The setJobDefinition operation updates a given job definition in the server job
repository.

424 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

SetJobDefinition
Example 9-18 contains the type definitions for the setJobDefinition operation.

This operation can be used only for updating existing job definitions.

Example 9-18 Type definitions for setJobDefinition operation

<xsd:element name="setJobDefinition">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="JobDefinition"type="jsdl:JobDefinitionType"
minOccurs="1" maxOccurs="1" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>

The SetJobDefinition type consists of JobDefinition, the job definition to be
saved.

SetJobDefinitionResponse
Example 9-19 contains the type definitions for the response to the
setJobDefinition operation.

Example 9-19 Type definitions for response to setJobDefinition operation

<xsd:element name="setJobDefinitionResponse">
<xsd:complexType>

<xsd:sequence />
</xsd:complexType>

</xsd:element>

Deleting the job definitions
In this section we describe the operations for deleting the job definitions.

The deleteJobDefinition operation deletes a given job definition in the server job
repository.

 Chapter 9. Interacting with Tivoli Dynamic Workload Broker using the Web services interface 425

DeleteJobDefinition
Example 9-20 contains the type definitions for the deleteJobDefinition operation.

This operation deletes existing job definitions.

Example 9-20 Type definitions for deleteJobDefinition operation

<xsd:element name="deleteJobDefinition">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="Name" type="xsd:QName" minOccurs="1" maxOccurs="1" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="deleteJobDefinitionResponse">
<xsd:complexType>

<xsd:sequence />
</xsd:complexType>

</xsd:element>

The DeleteJobDefinition type consists of Name, the name of the JobDefinition
(for instance, the job name) to be deleted. It is a QName, then it is of the form
"namespace:jobname". Nevertheless, namespaces different from the empty
strings are not supported, so it should be the job name only.

Querying the job definitions
In this section we describe the operations for querying the job definitions.

The queryJobDefinitions operation queries the job definitions stored in the server
job repository.

QueryJobDefinitions
This type describes all parameters passed to the queryJobDefinition operation.

This operation queries existing job definitions.

426 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Example 9-21 contains the type definitions for the queryJobDefinitions operation.

Example 9-21 Type definitions for queryJobDefinitions operation

<xsd:element name="queryJobDefinitions">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="NameFilter" type="xsd:string" minOccurs="0"
maxOccurs="1" />
<xsd:element name="TargetNamespaceFilter" type="xsd:string" minOccurs="0"
maxOccurs="1" />
<xsd:element name="DescriptionFilter" type="xsd:string" minOccurs="0"
maxOccurs="1" />
<xsd:element name="UserFilter" type="xsd:string" minOccurs="0"
maxOccurs="1" />
<xsd:element name="HowMany" type="xsd:int" minOccurs="0" maxOccurs="1" />
<xsd:element name="Iterator" type="xsd:string" minOccurs="0"
maxOccurs="1" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>

The QueryJobDefinition type consists of:

� Name Filter - the filter on job names. This filter supports wildcards.

� Target Namespace Filter - the filter on job target namespaces. This filter
supports wildcards. This is not Supported for NOW™.

� Description Filter - the filter on job descriptions. This filter supports wildcards.

� User Filter - This filter matches all job created by the specified user. This filter
supports wildcards.

� HowMany - the number of maximum job definitions that the query should
return in one invocation. Note that if the number of job definitions matching
the filter criteria is greater than this number then an iterator is returned and it
can be used to retrieve all other jobs not returned back.

� Iterator - an identifier used by the Tivoli Dynamic Workload Broker server to
query the remaining job definitions matching the criteria and exceeding the
HowMany parameter.

 Chapter 9. Interacting with Tivoli Dynamic Workload Broker using the Web services interface 427

QueryJobDefinitionProperties
Example 9-22 contains the type definitions describing all job definition attributes
returned by the query operation.

Example 9-22 Type definitions for QueryJobDefinitionPropertiesType

<xsd:complexType name="QueryJobDefinitionPropertiesType">
<xsd:sequence>

<xsd:element name="Name" type="xsd:QName" minOccurs="1" maxOccurs="1" />
<xsd:element name="Description" type="xsd:string" minOccurs="1" maxOccurs="1" />
<xsd:element name="Owner" nillable="true" type="xsd:string" minOccurs="1"
maxOccurs="1" />
<xsd:element name="CreationTime" type="xsd:dateTime" minOccurs="1"
maxOccurs="1" />
<xsd:element name="ModificationTime" type="xsd:dateTime" minOccurs="1"
maxOccurs="1" />

</xsd:sequence>
</xsd:complexType>

The QueryJobDefinitionProperties consists of:

� Name - the job definition name.
� Description - the job definition description.
� Owner - the job definition creator.
� Creation Time - the job definition creation time.
� Modification Time - the job definition modification time.

QueryJobDefinitionsResponse
Example 9-23 contains the type definitions describing all parameters returned by
the query operation.

Example 9-23 Type definitions for response to query operation

<xsd:element name="queryJobDefinitionsResponse">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="JobDefinitionProperties"
type="jdm:QueryJobDefinitionPropertiesType" minOccurs="0"
maxOccurs="unbounded" />
<xsd:element name="Iterator" type="xsd:string" minOccurs="0"
maxOccurs="1" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>

428 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

The QueryJobDefinitionsResponse consists of:

� Job Properties - the set of job definitions matching the filter criteria

� Iterator - the iterator to be used in case there are more job definitions
matching the requirements than requested with HowMany

Getting the job definition
In this section we describe the operations for getting the job definition.

The getJobDefinition interface gets the job definition in the server job repository.

GetJobDefinition
Example 9-24 contains the type definitions for the getJobDefinition operation.
This operation gets an existing job definition.

Example 9-24 Type definitions for getJobDefinition operation

<xsd:element name="getJobDefinition">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="Name" type="xsd:QName" minOccurs="1" maxOccurs="1" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>

The GetJobDefinition type consists of Name, the name of the requested job
definition.

GetJobDefinitionResponse
Example 9-25 contains the type definitions for the response to the
getJobDefinitionResponse operation.

Example 9-25 Type definitions for response to getJobDefinition operation

<xsd:element name="getJobDefinitionResponse">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="JobDefinition" type="jsdl:JobDefinitionType"
minOccurs="1" maxOccurs="1" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>

The GetJobDefinitionResponse type consists of Job Definition, the requested job
definition.

 Chapter 9. Interacting with Tivoli Dynamic Workload Broker using the Web services interface 429

9.4.5 Important terms related to job definitions

In this section we briefly introduce two important terms related to job submission:

� Variable substitution - Default values contained in a job’s definition can be
overriden at submission time.

� Job Affinity - A job affine to another should be dispatched.

Understanding this section in detail is not necessary if you are going through this
chapter for the first time. However, it may be useful at later time.

Variables substitution
Example 9-26 describes the type for passing of variables to the job at
submission time. The variables passed at submit time override the default value
already defined within the JSDL.

A variable consists of:

� Name: It can be referenced where possible in the JSDL using $ {var_name }
notation.

� Value: The actual value of the variable. It is converted to the correct type
when the variable substitution occurs at submission time.

Example 9-26 Type definitions for job variables

<xsd:complexType name="VariableType">
<xsd:sequence>

<xsd:element name="Name" type="xsd:NCName" minOccurs="1" maxOccurs="1" />
<xsd:element name="Value" type="xsd:string" minOccurs="1" maxOccurs="1" />

</xsd:sequence>
</xsd:complexType>

430 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Job affinity
Example 9-27 describes the type for affinity constraints. There are three possible
job affinity types:

� Job EndpointReferenceType: This contains the ID of the job to which the
submitting job should be affine. The Tivoli Dynamic Workload Broker
dispatches the submitting job to the same target as the affine one.

� Alias: The alias of the job to which the submitting job should be affine. The
Tivoli Dynamic Workload Broker server dispatches the submitting job to the
same target as the affine one.

� Resource group: The resource group containing the target resource where
the submitting job should be dispatched.

Example 9-27 Type definitions for job affinity

<xsd:complexType name="AffinityType">
<xsd:choice>

<xsd:element name="JobEPR" type="wsa:EndpointReferenceType" minOccurs="1"
maxOccurs="1" />
<xsd:element name="Alias" type="xsd:string" minOccurs="1" maxOccurs="1" />
<xsd:element name="Resources" type="rmt:ResourceGroup" minOccurs="0"
maxOccurs="unbounded" />

</xsd:choice>
</xsd:complexType>

For more information about variable substitution and job affinity, refer to IBM
Tivoli Dynamic Workload Broker User's Guide Version 1.1, SC32-2281.

9.4.6 Getting notified about job state changes

In this section we describe how the Tivoli Dynamic Workload Broker can be
notified about the job state changes.

Tivoli Dynamic Workload Broker clients submitting a job through the Web service
interfaces can be notified about job state changes if they implement the
NotificationConsumer service. As described above, it is possible to pass an
EndpointReferenceType in the submit that represents the address of the
NotificationConsumer service.

 Chapter 9. Interacting with Tivoli Dynamic Workload Broker using the Web services interface 431

JobStateEnumeration
Example 9-28 contains type definitions describing all possible job states.

Example 9-28 Type definitions for JobStateEnumeration

<xsd:simpleType name="JobStateEnumeration">
<xsd:annotation>

<xsd:documentation>
States for a Job.

</xsd:documentation>
</xsd:annotation>
<xsd:restriction base="xsd:string">

<xsd:enumeration value="SUBMITTED" />
<xsd:enumeration value="WAITING_FOR_RESOURCES" />
<xsd:enumeration value="RESOURCE_ALLOCATION_RECEIVED" />
<xsd:enumeration value="RESOURCE_ALLOCATION_FAILED" />
<xsd:enumeration value="SUBMITTED_TO_ENDPOINT" />
<xsd:enumeration value="PENDING_CANCEL" />
<xsd:enumeration value="CANCEL_ALLOCATION" />
<xsd:enumeration value="RESOURCE_REALLOCATE" />
<xsd:enumeration value="EXECUTING" />
<xsd:enumeration value="FAILED_EXECUTION" />
<xsd:enumeration value="SUCCEEDED_EXECUTION" />
<xsd:enumeration value="NOT_EXECUTED" />
<xsd:enumeration value="CANCELLED" />
<xsd:enumeration value="UNKNOWN" />

</xsd:restriction>
</xsd:simpleType>

432 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

JobUsageMetricsType
Example 9-29 contains the type definitions describing the metrics associated to
each job. These are expressed with a set of name-value-type triples. The
possible names are:

� "JOB_CPU_USAGE" with type "DECIMAL"
� "JOB_MEMORY_USAGE" with type "DECIMAL"

Example 9-29 Type definitions for metrics associated with jobs

<xsd:complexType name="JobUsageMetricsType">
<xsd:sequence>

<xsd:element name="Name" type="xsd:NCName" minOccurs="1"
maxOccurs="1" />
<xsd:element name="Value" type="xsd:string" minOccurs="1"
maxOccurs="1" />
<xsd:element name="Type" type="xsd:string" minOccurs="0"
maxOccurs="1" />

</xsd:sequence>
</xsd:complexType>

NotifyJobStatusChange
Example 9-30 contains the type definitions describing the job attributes sent in
the notification.

Example 9-30 Type definitions for the job attributes sent in the notification

<xsd:element name="NotifyJobStatusChange">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="State" type="jmt:JobStateEnumeration" maxOccurs="1"
minOccurs="1" />
<xsd:element name="Alias" type="xsd:string" minOccurs="0" maxOccurs="1" />
<xsd:element name="StatusMessage" type="xsd:string" minOccurs="0"
maxOccurs="1" />
<xsd:element name="SubmittedTime" type="xsd:dateTime" minOccurs="0"
maxOccurs="1" />
<xsd:element name="StartTime" type="xsd:dateTime" minOccurs="0"
maxOccurs="1" />
<xsd:element name="EndTime" type="xsd:dateTime" minOccurs="0"
maxOccurs="1" />
<xsd:element name="Duration" type="xsd:duration" minOccurs="0"
maxOccurs="1" />
<xsd:element name="ReturnCode" type="xsd:integer" minOccurs="0"
maxOccurs="1" />
<xsd:element name="Metric" type="jmt:JobUsageMetricsType" minOccurs="0"
maxOccurs="unbounded" />

</xsd:sequence>

 Chapter 9. Interacting with Tivoli Dynamic Workload Broker using the Web services interface 433

</xsd:complexType>
</xsd:element>

The NotifyJobStatusChange consists of:

� Alias - the job alias.

� State - the job state.

� Status Message - the last diagnostic message received for the job.

� Submitted Time - the job submit time.

� Start Time - the job start time.

� End Time - the job end time.

� Duration - the duration of the job from start to end time.

� Return code - the job return code. This is valid only for native.

� Metric - a set of metrics (CPU used and Max memory) about resource
consumed by the native jobs.

NotificationMessageHolderType
Example 9-31 contains the type definitions describing the otification message
passed in the notify operation.

Example 9-31 Type definitions for notification message

<xsd:complexType name="NotificationMessageHolderType">
<xsd:sequence>

<xsd:element name="Topic" type="xsd:string" maxOccurs="1" minOccurs="1" />
<xsd:element name="ProducerReference" type="wsa:EndpointReferenceType"
maxOccurs="1" minOccurs="1" />
<xsd:element name="ProducerID" type="xsd:string" maxOccurs="1" minOccurs="1" />
<xsd:element name="Message" type="xsd:anyType" maxOccurs="1" minOccurs="1"/>

</xsd:sequence>
</xsd:complexType>

The NotificationMessageHolderType is made of the following elements:

� Topic - It can only be "JobStatusChange".

� Producer Reference - the EPR of the job changing the state.

� Producer ID - not used.

� Message - contains the relevant information about the job. The actual type is
NotifyJobStatusChange.

434 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

9.5 Creating the sample client

In this section we provide a step-by-step explanation of the process of building
the client application leveraging the Web services interface provided by the Tivoli
Dynamic Workload Broker server.

We create a sample client that will be able to submit a job from the JSDL
definition stored in the file. The client application monitors the status of the
submitted job until it ends, either successfully or not.

We describe the following topics:

� Development environments used in our scenarios

� Steps for creating the project in Rational Application Developer:

– Creating a project with defined input/output paths

– Including the directory with Web services related files into your project

– Generating the Web Service client Java packages from the WSDL file

– Adding the application logic and linking it together with the Web Service
client Java packages

– Running the client within the Rational Application Developer environment

� Steps for creating the project using Eclipse together with utilities and JAR files
provided with WebSphere Application Server V6.1:

– Creating a project with defined input/output paths

– Creating the Web Service client (generating the Web Service client Java
packages from the WSDL definition using the WSDL2Java command-line
utility)

– Providing the generated Web Service client Java packages created in
previous step to the project

– Adding the application logic and linking it together with the Web service
client Java packages

– Running the project within Eclipse

� Running the client from the command line

� Java run times and JAR files necessary for running the client from the
command line

 Chapter 9. Interacting with Tivoli Dynamic Workload Broker using the Web services interface 435

9.5.1 Development tools used in our scenarios

There are many Integrated Development Environments (IDEs) that allow you to
develop applications based on a Java platform. In the following sections we
demonstrate how to build the sample client using two Integrated Development
Environments:

� Rational® Application Developer V7.0

� Eclipse in conjunction with libraries and tools provided with WebSphere
Application Server V6.1

9.5.2 Creating the sample client using Rational Application
Developer

In this section we describe how to create a sample client application leveraging
the Tivoli Dynamic Workload Broker Web services interface. We use the Rational
Application Developer V7.0 for this task.

We describe the actions that must be taken in order to successfully create the
sample client from scratch. The step-by-step instructions describe the following
tasks:

� Creating the project

� Providing the WSDL definitions to the project

� Creating the Web Service client (generating Java packages from the WSDL
definition)

� Adding the application logic and linking it together with the Java packages
created in previous step

� Running the project

Note: From the lists shown above it may seem that the steps for creating the
sample client are almost the same. They are similar, but they differ in a few
important steps. In the Rational Application Developer scenario we do not
directly call any command-line utility, while in the Eclipse scenario we call the
WSDL2Java utility directly from the command line. Also, the ways in which we
provide the Web Service client Java packages are different for Rational
Application Developer and Eclipse.

436 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Creating the project
In this section we demonstrate how to create the project for our sample client.

1. Launch the Rational Application Developer and create a new project by
selecting File → New Project. Select Java project and click Next.

2. In the following window, type in the project name. Type Client into the Project
Name text box. Then specify separate subdirectories for the source code and
for the output (Java classes). Select Create separate source and output
folders (Figure 9-3).

Figure 9-3 Creating a new Java Project

 Chapter 9. Interacting with Tivoli Dynamic Workload Broker using the Web services interface 437

3. To make sure which directories are dedicated for the input (sources) and
output (classes), click Configure default, and in the following window check
the values of the source folder name and output folder name (Figure 9-4).

Figure 9-4 Selecting the source and output folders

4. Keep the following values:

– Source folder name: src
– Output folder name: bin

5. Click OK to close the Preferences window and then click Next and Finish in
the following window.

438 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Based on your configuration, you should have your workspace divided into
several panes. If you do not see the Package Explorer pane in your
workspace, switch the view by selecting Window → Show view → Package
Explorer (Figure 9-5).

Figure 9-5 Switching to Package Explorer View

 Chapter 9. Interacting with Tivoli Dynamic Workload Broker using the Web services interface 439

Now your workspace should look like Figure 9-6.

Figure 9-6 Rational Application Developer - workspace

Providing the WSDL files to the project
In this section we demonstrate how to provide the WSDL files located on the
installation media to the project.

1. Create the additional directory within the project structure. This directory
contains the WSDL definitions and other related files.

440 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

2. In the Package Explorer pane right-click our client project. Select New →
Folder (Figure 9-7).

Figure 9-7 Adding a folder to the project - 1

 Chapter 9. Interacting with Tivoli Dynamic Workload Broker using the Web services interface 441

3. In the following window, type the folder name. Type wsdl into the Folder name
text box (Figure 9-8).

Figure 9-8 Adding a folder to the project - 2

4. Now you must copy the WSDL definitions together with other files to the wsdl
subdirectory of our project. Perform the following copy:

– Source: Select all of the WSDL files from the Tivoli Dynamic Workload
Broker V1.2 installation CD, under the directory TDWB/wsdl.

– Target: Copy the files into the <workspace>/Client/wsdl directory, where
<workspace> is the directory on the file system that is dedicated for the
workspace of your Rational Application Developer.

442 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

5. You can determine the workspace path by selecting File → Switch
workspace. In the window that pops up, you can see the current workspace
path (Figure 9-9). Do not change anything. Click Cancel. We just used one of
possible ways of how to find out where we want to copy the WSDL files.

Figure 9-9 Determining the workspace path

6. When you have copied the files into the wsdl subdirectory of your project,
return back to the Rational Application Developer workspace.

 Chapter 9. Interacting with Tivoli Dynamic Workload Broker using the Web services interface 443

7. Now you must refresh the content of the wsdl directory within your project
structure. In the Package Explorer pane right-click wsdl and select Refresh
(Figure 9-10). You can refresh the view by pressing F5 as well.

Figure 9-10 Refresh of wsdl folder

8. Expand the wsdl folder and see the result. The files copied from the
installation media should be listed under the wsdl folder (Figure 9-11).

Figure 9-11 Copied files within the wsdl folder

444 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Creating the Web Service client
In this section we demonstrate how to create a Web Service client. We use the
WSDL (and other important XML files) that we provided to the project in the
previous step - “Providing the WSDL files to the project” on page 440.

1. In the Package Explorer pane right-click our Client project and select New →
Other (Figure 9-12).

Figure 9-12 Creating the Web Service client - 1

Note: There is one more approach that can be used for providing the WSDL
files to the project. You can just link the wsdl folder to the existing folder
(during the creation of the new folder, you will click Advanced and then select
Link to folder in the file system). Ponting to the directory by link is sufficient
when you are sure that the files from the linked folder will always be available
when needed. However, it is a good practice to keep the WSDL files (and
related XML files) within the project structure. Keep in mind that if you linked
the folder directly to teh CD media, the link will be broken when the CD is
removed from the drive.

 Chapter 9. Interacting with Tivoli Dynamic Workload Broker using the Web services interface 445

2. Scroll down if necessary and select Web Services → Web Service Client
(Figure 9-13).

Figure 9-13 Creating the Web Service client - 2

446 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

3. Point to the correct WSDL file. Click Browse (Figure 9-14).

Figure 9-14 Creating the Web Service client - 3

 Chapter 9. Interacting with Tivoli Dynamic Workload Broker using the Web services interface 447

4. In the following widow click Browse again. In the Window that pops up,
navigate to Client → wsdl → JobFactory.wsdl. Click OK (Figure 9-15).

Figure 9-15 Creating the Web Service client - 4

5. Click OK and OK again.

In the Web Service Client window check the configuration settings. They
should be as follows:

– Server: WebSphere V6.1 Server
– Web service run time: IBM WebSphere JAX-RPC
– Client project: Client

448 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

See Figure 9-16.

Figure 9-16 Creating the Web Service client-5

6. It the settings are different, adjust them so that they correspond to the settings
shown above.

7. Now remap the namespaces to different Java package naming. If we did not
do that, the conversion tool would generate package names corresponding to
namespaces defined within the JobFactory.wsdl file. The package names
would be less readable and their nesting would not be that simple.

There is a file provided with the WSDL files containing all the necessary
mapping information. The name of the file is
Scheduling-N2PMap.jd.properties. We use this file in our scenario in order to
map namespaces to a corresponding package structure.

Important: It is necessary to use WebSphere Application server V6.1.
Prior versions are not supported for Tivoli Dynamic Workload Broker Web
services client development.

 Chapter 9. Interacting with Tivoli Dynamic Workload Broker using the Web services interface 449

8. In the current window (Web Service Client), select Define custom mapping
for namespace to package and click Next (Figure 9-17).

Figure 9-17 Creating the Web Service client - 6

450 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

9. In the following window click Import. In the window that pops up navigate to
Client → wsdl → Scheduling-N2PMap.jd.properties (Figure 9-18).

Figure 9-18 Creating the Web Service client - 7

 Chapter 9. Interacting with Tivoli Dynamic Workload Broker using the Web services interface 451

10.Click OK. You should see the mapping of namespaces into package names
(Figure 9-19).

Figure 9-19 Creating the Web Service client-8

11.Click Finish. Click OK if you see the window with message Warning messages
were issued.

12.In the workspace go to the Package Explorer pane. Expand the folder for
sources (src) and look at the packages that were added automatically to your
project.

Figure 9-20 Packages for Web services client

Now you have finished the necessary steps that generated Java packages,
allowing you to use a JobFactory Web Service on the Tivoli Dynamic Workload
Broker server from your client.

452 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Adding the application logic
In this section we demonstrate how to create the package and the class that
contain the main application logic. This core application class uses the Java
packages generated in “Creating the Web Service client” on page 445.

We demonstrate the following tasks:

� Creating the package containing the core application class

� Importing the packages generated in previous step into the core application
class

� Providing the source code using the Web Service client Java packages
generated in the previous step

Creating the package and Java class
In this section we describe how to create the package with a class that includes
the application logic and references (imports) the Web Service client Java
packages that we have generated from the WSDL file.

1. First we create a new package. In the Package Explorer navigate to the
source folder under our project. Expand Client and right-click src. Select
New → Package (Figure 9-21).

Figure 9-21 Creating a new package - 1

Note: We use the term core application class in this scenario. This is our
terminology that helps us to distinguish the class that implements the
application logic from the classes that were generated from the WSDL
definitions. Core application class is not an official Java term.

 Chapter 9. Interacting with Tivoli Dynamic Workload Broker using the Web services interface 453

2. Type the package name. In this scenario we use
com.ibm.scheduling.Submitter as the package name (Figure 9-22).

Figure 9-22 Creating a new package - 2

3. Click Finish. You should see the new package com.ibm.scheduling.Submitter
in the Package Explorer. Right-click it and select New → Class (Figure 9-23).

Figure 9-23 Creating a new class - 1

454 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

4. Type the class name. In our scenario we use Submitter as the class name.
Select the check box public static void main(String[] args) to include the
template of the main method in the class definition (Figure 9-24).

Figure 9-24 Creating a new class - 2

 Chapter 9. Interacting with Tivoli Dynamic Workload Broker using the Web services interface 455

5. Click Finish. The generated class should appear in your workspace.
Figure 9-25 shows the workspace with the generated class.

Figure 9-25 Workspace with the generated class

Importing the generated packages
In this section we describe which generated Web Service client Java packages
should be imported into the core application class. We list the packages that
must be imported in order to use the JobFactory Web service.

According to the namespace-to-package mapping that we specified by using the
Scheduling-N2PMap.jd.properties file (while generating the packages from
WSDL definitions), the package names begin with the
com.ibm.scheduling.jobdispatcher prefix.

456 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

To allow the sample client to use classes defined within these packages, you
must import the packages into the core application class that will reference them.
Importing allows you to reference to the classes without referencing the package
name. Example 9-32 shows which statements are used for importing the
packages generated from the JobFactory.wsdl file.

Example 9-32 Importing the packages

import com.ibm.scheduling.jobdispatcher.jobfactory.JobFactory;
import
com.ibm.scheduling.jobdispatcher.jobfactory.JobFactoryServiceLocator;
import com.ibm.scheduling.jobdispatcher.jobfactory.JobStatus;
import com.ibm.scheduling.jobdispatcher.types.JobStateEnumeration;

The Client application source code
In this section we provide the entire source code of the client core application
class. This is the Submitter class defined within the
com.ibm.scheduling.Submitter package.

The entire code is included in Example 9-33. The code has the important parts
fully commented.

Example 9-33 Core application class with main method

package com.ibm.scheduling.Submitter;

//standard java packages
import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.InputStream;
import java.io.InputStreamReader;

//our packages generated by WSDL2Java from WSDL definition
//default namespaces were remapped to packages in hierarchy com.inm.scheduling
import com.ibm.scheduling.jobdispatcher.jobfactory.JobFactory;
import com.ibm.scheduling.jobdispatcher.jobfactory.JobFactoryServiceLocator;
import com.ibm.scheduling.jobdispatcher.jobfactory.JobStatus;
import com.ibm.scheduling.jobdispatcher.types.JobStateEnumeration;

public class Submitter {
public static void main(String args[]){

 //default values for TDWB server hostname and port. Pointer to JSDL file on local
filesystem.

String hostName = "helsinki";
String port = "9550";
String jsdlFilename= "d:\\testjob.jsdl";
System.out.println("Hello, this is a job submitter.");

 Chapter 9. Interacting with Tivoli Dynamic Workload Broker using the Web services interface 457

//instantiating new JobFactoryServiceLocator
JobFactoryServiceLocator jfsl = new JobFactoryServiceLocator();

//we will not catch each exception in this example
try {
 //getting command line arguments. They can override hostname and port of TDWB server

and JSDL file name
if (args.length > 0)

hostName = args[0];
if (args.length > 1)

port = args[1];
if (args.length > 2)

jsdlFilename = args[2];

System.out.println("Submitting job from JSDL file: "+jsdlFilename+". TDWB hostname:
"+hostName+"TDWB port"+port);

 //reading the definition from JSDL file
 StringBuffer document = new StringBuffer();
 InputStream is = null;
 System.out.println("Reading jsdl file " + jsdlFilename);
 is = new FileInputStream(jsdlFilename);
 InputStreamReader isr = new InputStreamReader(is);
 BufferedReader br = new BufferedReader(isr);
 String line = null;
 while ((line = br.readLine()) != null) {
 document.append(line);
 } //while

 //creating URLs for JobFactory
String jobFactoryURL = "http://" + hostName + ":" + port +

"/JDServiceWS/services/JobFactory";

 //instantiating new jobFactory with corresponding URL
 JobFactory jf = jfsl.getJobFactory(new java.net.URL(jobFactoryURL));

System.out.println("Submitting job");

// submitting the job, using the JobFactory method submitJobFromJSDLXml()
// getting the endpoint reference of that job to "epr". We will use "epr" later on,
// whenever we will need to point to the instance of submitted job
// operation submitJobFromJSDLXml requires several parameters, the only necessary for

our purpose
// is the JobDefinitionDocument (described in the type definition of

submitJobFromJSDLXml operation)
// the other 5 arguments are referrenced as null
com.ibm.websphere.wsaddressing.EndpointReference epr =

jf.submitJobFromJSDLXml(document.toString(),

458 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

null,null,null,null,null);

//printing EndpointReference to the submitted job
System.out.println("Succesfull epr: " + epr);

//instantiating an array of endpoint references
com.ibm.websphere.wsaddressing.EndpointReference jobEprs[] = new

com.ibm.websphere.wsaddressing.EndpointReference[1];

//store the EndpointReference to the 1st position of the array
//we need the array of Endpoint references for querying job states,
//because the method getJobsStatuses() (a few lines below)
//requires an array of EndpointReferences as its argument
jobEprs[0] = epr;

//beginning of loop
boolean term = true;
do {

//querying the job status.
//pass the ARRAY of endpoint references to the JobFactory method getJobsStatuses()
//method getJobsStatuses() returns an array of job states as a response.
//store the response into array "gjsResp" of type JobStatus
JobStatus[] gjsResp = jf.getJobsStatuses(jobEprs);

//if we have at least one job status in the array of job states
if (gjsResp.length > 0) {

//call the method getState() of JobStatus (instantiated to "gjsResp")
//query the 1st position of the array. It corresponds to the 1st position
//of our endpoint reference
System.out.println("Job status: " + gjsResp[0].getState());
//test, if there was not any fault while getting the job state
if (gjsResp[0].getFault() == null) {

//now compare the status of the jobs against the list of desired states
//until the job that we have submitted, does not reach the desired state, the

loop will not end.
term = (gjsResp[0].getState() == JobStateEnumeration.SUCCEEDED_EXECUTION) ||
(gjsResp[0].getState() == JobStateEnumeration.FAILED_EXECUTION) ||
(gjsResp[0].getState() == JobStateEnumeration.NOT_EXECUTED) ||
(gjsResp[0].getState() == JobStateEnumeration.RESOURCE_ALLOCATION_FAILED);
Thread.sleep(1000);

} else {
//if fault occured, print error code
System.out.println("Error: " + gjsResp[0].getFault().getErrorCode());
term = true;

} //else (on getfault)
} else {

System.out.println("Error empty vector");
term = true;

} //else (on gjsResp.length)

 Chapter 9. Interacting with Tivoli Dynamic Workload Broker using the Web services interface 459

} while (!term); //end of loop

System.out.println("Succesfull");

} catch (Exception e) {
//we do not determine the exact exception...

e.printStackTrace();
} //catch

} //main
} //Submitter

Paste this code into the Submitter.java class. Replace all of the previously
generated content of the Submitter.java class, because the code provided in this
example already contains all of the necessary content.

After putting this code into Submitter.java, your workspace should look similar to
Figure 9-26. We minimized some unimportant workspace windows because we
want to show you the most important information in this figure.

Figure 9-26 Putting the code into Submitter.java

460 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Providing the sample JSDL file
In order to be able to test the functionality of the sample client, you must point to
the existing JSDL file located somewhere in your file system. You can create your
own sample definition or use any existing JSDL file.

In Example 9-34 we provide a sample JSDL definition that you can use for testing
purposes. In our scenario we have this definition stored in the D:\testjob.jsdl file.

Example 9-34 Sample JSDL definition

<?xml version="1.0" encoding="UTF-8"?>
<jsdl:jobDefinition xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl"
xmlns:jsdle="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdle"
xsi:schemaLocation="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl JSDL.xsd
http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdle JSDL-Native.xsd" description="Sample Test
job" name="testjob">
 <jsdl:annotation>This job is for testing purposes only. It does not require any special
resource to run.</jsdl:annotation>
 <jsdl:application name="executable">
 <jsdle:executable path="echo TDWB_SAMPLE_JOB"/>
 </jsdl:application>
</jsdl:jobDefinition>

Running the sample client from the Rational Application
Developer
In this section we describe how to run the sample client from the Rational
Application Developer environment.

 Chapter 9. Interacting with Tivoli Dynamic Workload Broker using the Web services interface 461

In the Package Explorer pane navigate to our project named Client. Then click
the Run icon, as shown in Figure 9-27. In the console pane you can see the
output of the project. You should see similar output as that shown in Figure 9-27.

Figure 9-27 Running the sample client within Rational Application Developer

For the instructions on how to run the sample client from the command line see
9.5.4, “Running the sample client from the command line” on page 485.

9.5.3 Creating the sample client using Eclipse

In this section we describe how to create a sample client using the Eclipse V3.2.1
together with utilities and JAR files provided with WebSphere Application Server
V6.1.

462 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

We describe the actions that must be taken in order to successfully create the
sample client from scratch. The step-by-step instructions describe following
tasks:

� Creating a project

� Creating the Web Service client (generating Java packages from WSDL
definition using the WSDL2Java command-line utility)

� Providing the Java packages created in the previous step to the project

� Adding the application logic and linking it together with the Java packages
created in the previous step

� Running the project

Creating the project
In this section we demonstrate how to create the project for our sample client.

1. Launch Eclipse and create a new project by selectingFile → New Project.
Select Java project and click Next.

 Chapter 9. Interacting with Tivoli Dynamic Workload Broker using the Web services interface 463

2. In the following window type in the project name. Type Client into the Project
Name text box. Then specify separate subdirectories for the source code and
for the output (Java classes). Select Create separate source and output
folders (Figure 9-28).

Figure 9-28 Creating a new Java Project

464 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

3. To make sure which directories are dedicated for the input (sources) and
output (classes), click Configure default, and in the following window check
the values of source folder name and output folder name (Figure 9-29).

Figure 9-29 Selecting the source and output folders

4. Keep the following values:

– Source folder name: src
– Output folder name: bin

5. Click OK to close the Preferences window and click Next in the following
window.

Now you must provide the project with the additional JAR file containing the
necessary Java classes necessary for building and running the Web services
client. This JAR file is included in the WebSphere Application Server V6.1
installation directory. You must add the
<was_install_dir>/runtimes/com.ibm.ws.webservices.thinclient_6.1.0.jar to
the project.

 Chapter 9. Interacting with Tivoli Dynamic Workload Broker using the Web services interface 465

The default WebSphere Application Server installation path is as follows:

– Windows - C:\Program Files\IBM\WebSphere\AppServer
– AIX - /usr/IBM/WebSphere/AppServer
– Other UNIX platforms and Linux - /opt/IBM/WebSphere/AppServer

To provide the project with additional JARs do the steps described below.

6. While still in the New Java Project window, click the Libraries folder and then
click Add External JARs (Figure 9-30).

Figure 9-30 Adding JAR to the project - 1

466 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

7. A JAR selection browser pops up. Navigate to the <was_install_dir>/runtimes/
directory and select file com.ibm.ws.webservices.thinclient_6.1.0.jar. Click
Open (Figure 9-31).

Figure 9-31 Adding JAR to the project-2

8. Click Finish in the New Java Project window.

9. Based on your configuration, you should have your workspace divided into
several panes. If you do not see the Package Explorer pane in your
workspace, switch the view by selecting Window → Show view → Package
Explorer (Figure 9-32).

Figure 9-32 Switching to Package Explorer view

 Chapter 9. Interacting with Tivoli Dynamic Workload Broker using the Web services interface 467

Now your workspace should look like Figure 9-33.

Figure 9-33 Eclipse - workspace

Generating the Web Service java packages from the WSDL
definition
In this section we describe how to build the Web services client Java packages
from the WSDL files using the command-line utility WSDL2Java.

1. Prior to running the tool you should know the location of the WSDL files. We
recommend that you copy the files from the installation media to your hard
drive.

Perform the following copy:

– Source: Select all of the WSDL files from the Tivoli Dynamic Workload
Broker V1.2 installation CD, under the directory TDWB/wsdl.

– Target: Copy the files into the <workspace>/Client/wsdl directory, where
<workspace> is the directory on the file system that is dedicated for the
Eclipse workspace.

468 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

2. You can determine the workspace path by selecting File → Switch
workspace. In the window that pops up, you can see the current workspace
path (Figure 9-34). Do not change anything. Click Cancel. We just used one
of possible ways of finding out where we want to copy the WSDL files.

Figure 9-34 Eclipse - Determining the workspace path

WSDL2Java must be supplied with some necessary parameters in order to
generate the proper packages.

An important optional parameter allows the remapping of the namespaces
used in the WSDL definition to different Java package naming. If we did not
use this parameter, the WSDL2Java conversion tool would generate package
names corresponding to namespaces defined within the JobFactory.wsdl file.
The package names would be less readable and their nesting would not be
that simple.

There is a file provided with the WSDL files containing all of the necessary
mapping information. The name of the file is
Scheduling-N2PMap.jd.properties. We use this file in our scenario in order to
map namespaces to a corresponding package structure.

 Chapter 9. Interacting with Tivoli Dynamic Workload Broker using the Web services interface 469

3. Example 9-35 shows the sample syntax of the WSDL2Java utility, which is
provided with the WebSphere Application Server V6.1. In order to generate
the Web Service client for our scenario, you must supply the following
parameters to the WSDL2Java utility:

– -c client
– -r client
– - fileNStoPkg <wsdl_files_directory>/Scheduling-N2PMap.jd.properties
– -o <output_directory>
– <wsdl_files_directory>/proper_wsdl_file

4. Example 9-35 demonstrates how the Web services client Java packages can
be generated. If you receive similar warning messages to those shown in the
example, you may ignore them.

Example 9-35 Generating the Java packages from the command line

C:\Program Files\IBM\WebSphere\AppServer\bin>WSDL2Java.bat -c client -r client -
fileNStoPkg D:\Eclipse\workspace\Client\wsdl\Scheduling-N2PMap.jd.properties -o
D:\Eclipse\workspace\Client\services D:\Eclipse\workspace\Client\wsdl\JobFactory
.wsdl

WSWS3752I: (C) COPYRIGHT International Business Machines Corp. 1997, 2006.
WSWS3753I: IBM WebSphere Application Server Release 6.1
WSWS3755I: Web services WSDL2Java emitter.

WSWS3029W: Warning: The xml construct named {http://www.ibm.com/xmlns/prod/sched
uling/1.0/job-management/job-factory}AffinityType cannot be mapped to a java typ
e. The construct will be mapped to javax.xml.soap.SOAPElement.
WSWS3029W: Warning: The xml construct named {http://www.ibm.com/xmlns/prod/sched
uling/1.0/jsdl}ExtensibleElementsType cannot be mapped to a java type. The cons
truct will be mapped to javax.xml.soap.SOAPElement.
WSWS3029W: Warning: The xml construct named {http://www.ibm.com/xmlns/prod/sched
uling/1.0/jsdl}VariablesType cannot be mapped to a java type. The construct wil
l be mapped to javax.xml.soap.SOAPElement.

Note: If you have copied the files into the /wsdl subdirectory in your Client
project, the value of <wsdl_files_directory> is <workspace>/Client/wsdl,
where <workspace> is the location of your Eclipse workspace.

In our scenario we use <workspace>/Client/services as the value for
<output_directory>. This is not mandatory, but we recommend that you
place the generated Web services client Java packages in to the
subdirectory of your project file structure.

Note: The WSDL2Java utility is located in the <was_install_dir>/bin directory.

470 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Now you have finished the necessary steps that generated the Web Service
client Java packages allowing you to use a JobFactory Web Service on the
Tivoli Dynamic Workload Broker server from your client.

Providing the Web Service client Java packages to the project
In this section we demonstrate how to provide the generated Web Service client
Java package to the project.

1. In the Package Explorer pane navigate to our Client project. Right-click it and
select Refresh (Figure 9-35). You can refresh the view by pressing F5 as
well.

Figure 9-35 Refresh of the project content

2. If you expand the Client project, you should see that two directories have
been added — one containing the original WSDL files and the second
containing the generated Web Service Java packages (Figure 9-36).

Figure 9-36 Refreshed project content

 Chapter 9. Interacting with Tivoli Dynamic Workload Broker using the Web services interface 471

3. In the Package Explorer pane navigate to our Client project. Right-click it and
select Properties (Figure 9-37).

Figure 9-37 Opening the project properties

472 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

4. In the window that pops up, navigate to the Source folder. Click Add Folder
(Figure 9-38).

Figure 9-38 Providing the additional source folder to the project - 1

 Chapter 9. Interacting with Tivoli Dynamic Workload Broker using the Web services interface 473

5. Select the check box next to services folder (Figure 9-39).

Figure 9-39 Providing the additional source folder to the project - 2

474 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

6. Click OK and leave the default inclusion and exclusion filters (Figure 9-40).

Figure 9-40 Providing the additional source folder to the project - 3

7. Click OK.

8. In the Package Explorer expand the services folder. You should see the Web
services client packages added to the Client project (Figure 9-41).

Figure 9-41 Web Service client Java packages added to the project

Now you have finished the necessary steps to provide the project with the
Web Service Java packages. These packages allow you to use a JobFactory

 Chapter 9. Interacting with Tivoli Dynamic Workload Broker using the Web services interface 475

Web Service provided by the Tivoli Dynamic Workload Broker server from
your client.

Adding the application logic
In this section we demonstrate how to create the package and the class that
contain the main application logic. This core application class uses the Java
packages generated in “Creating the Web Service client” on page 445.

We demonstrate the following tasks:

� Creating the package containing the core application class

� Importing the packages generated in the previous step into the core
application class

� Providing the source code using the Web Service client Java packages
generated in the previous step

Creating the package and Java class
In this section we describe how to create the package with class that includes the
application logic and references (imports) the Web Service client Java packages
that we generated from the WSDL file.

1. First we create a new package. In the Package Explorer navigate to the
source folder under our project. Expand Client and right-click src. Select
New → Package (Figure 9-42).

Figure 9-42 Creating a new package - 1

Note: We use the term core application class in this scenario. This is just our
terminology that helps us distinguish the class that implements the application
logic from the classes that were generated from the WSDL definitions. Core
application class is not an official Java term.

476 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

2. Type the package name. In this scenario we use
com.ibm.scheduling.Submitter as the package name (Figure 9-43).

Figure 9-43 Creating a new package - 2

3. Click Finish. You should see the new package com.ibm.scheduling.Submitter
in the Package Explorer. Right-click it and select New → Class (Figure 9-44).

Figure 9-44 Creating a new class - 1

 Chapter 9. Interacting with Tivoli Dynamic Workload Broker using the Web services interface 477

4. Type in the class name. In our scenario we use Submitter as the class name.
Select the check box public static void main(String[] args) to include the
template of the main method in the class definition (Figure 9-45).

Figure 9-45 Creating a new class - 2

478 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

5. Click Finish. The generated class should appear in your workspace.
Figure 9-46 shows the workspace with the generated class.

Figure 9-46 Workspace with the generated class

Importing the generated packages
In this section we describe which generated Web service client Java packages
should be imported into the core application class. We list the packages that
must be imported in order to use the JobFactory Web Service.

According to the namespace-to-package mapping that we specified by using the
Scheduling-N2PMap.jd.properties file (while generating the packages from
WSDL definitions), the package names begin with the
com.ibm.scheduling.jobdispatcher prefix.

To allow the sample client to use classes defined within these packages, you
must import the packages into the core application class that will reference them.
Importing allows you to reference to the classes without referencing the package
name. Example 9-36 shows which statements are used for importing the
packages generated from the JobFactory.wsdl file.

Example 9-36 Importing the packages

import com.ibm.scheduling.jobdispatcher.jobfactory.JobFactory;
import
com.ibm.scheduling.jobdispatcher.jobfactory.JobFactoryServiceLocator;
import com.ibm.scheduling.jobdispatcher.jobfactory.JobStatus;
import com.ibm.scheduling.jobdispatcher.types.JobStateEnumeration;

 Chapter 9. Interacting with Tivoli Dynamic Workload Broker using the Web services interface 479

The Client application source code
In this section we provide the whole source code of the client core application
class. This is the Submitter class defined within the
com.ibm.scheduling.Submitter package.

The whole code is included in Example 9-37. The code has the important parts
fully commented.

Example 9-37 Core application class with main method

package com.ibm.scheduling.Submitter;

//standard java packages
import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.InputStream;
import java.io.InputStreamReader;

//our packages generated by WSDL2Java from WSDL definition
//default namespaces were remapped to packages in hierarchy com.inm.scheduling
import com.ibm.scheduling.jobdispatcher.jobfactory.JobFactory;
import com.ibm.scheduling.jobdispatcher.jobfactory.JobFactoryServiceLocator;
import com.ibm.scheduling.jobdispatcher.jobfactory.JobStatus;
import com.ibm.scheduling.jobdispatcher.types.JobStateEnumeration;

public class Submitter {
public static void main(String args[]){

 //default values for TDWB server hostname and port. Pointer to JSDL file on local
filesystem.

String hostName = "helsinki";
String port = "9550";
String jsdlFilename= "d:\\testjob.jsdl";
System.out.println("Hello, this is a job submitter.");

//instantiating new JobFactoryServiceLocator
JobFactoryServiceLocator jfsl = new JobFactoryServiceLocator();

//we will not catch each exception in this example
try {
 //getting command line arguments. They can override hostname and port of TDWB server

and JSDL file name
if (args.length > 0)

hostName = args[0];
if (args.length > 1)

port = args[1];
if (args.length > 2)

jsdlFilename = args[2];

480 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

System.out.println("Submitting job from JSDL file: "+jsdlFilename+". TDWB hostname:
"+hostName+"TDWB port"+port);

 //reading the definition from JSDL file
 StringBuffer document = new StringBuffer();
 InputStream is = null;
 System.out.println("Reading jsdl file " + jsdlFilename);
 is = new FileInputStream(jsdlFilename);
 InputStreamReader isr = new InputStreamReader(is);
 BufferedReader br = new BufferedReader(isr);
 String line = null;
 while ((line = br.readLine()) != null) {
 document.append(line);
 } //while

 //creating URLs for JobFactory
String jobFactoryURL = "http://" + hostName + ":" + port +

"/JDServiceWS/services/JobFactory";

 //instantiating new jobFactory with corresponding URL
 JobFactory jf = jfsl.getJobFactory(new java.net.URL(jobFactoryURL));

System.out.println("Submitting job");

// submitting the job, using the JobFactory method submitJobFromJSDLXml()
// getting the endpoint reference of that job to "epr". We will use "epr" later on,
// whenever we will need to point to the instance of submitted job
// operation submitJobFromJSDLXml requires several parameters, the only necessary for

our purpose
// is the JobDefinitionDocument (described in the type definition of

submitJobFromJSDLXml operation)
// the other 5 arguments are referrenced as null
com.ibm.websphere.wsaddressing.EndpointReference epr =

jf.submitJobFromJSDLXml(document.toString(),
null,null,null,null,null);

//printing EndpointReference to the submitted job
System.out.println("Succesfull epr: " + epr);

//instantiating an array of endpoint references
com.ibm.websphere.wsaddressing.EndpointReference jobEprs[] = new

com.ibm.websphere.wsaddressing.EndpointReference[1];

//store the EndpointReference to the 1st position of the array
//we need the array of Endpoint references for querying job states,
//because the method getJobsStatuses() (a few lines below)
//requires an array of EndpointReferences as its argument
jobEprs[0] = epr;

 Chapter 9. Interacting with Tivoli Dynamic Workload Broker using the Web services interface 481

//beginning of loop
boolean term = true;
do {

//querying the job status.
//pass the ARRAY of endpoint references to the JobFactory method getJobsStatuses()
//method getJobsStatuses() returns an array of job states as a response.
//store the response into array "gjsResp" of type JobStatus
JobStatus[] gjsResp = jf.getJobsStatuses(jobEprs);

//if we have at least one job status in the array of job states
if (gjsResp.length > 0) {

//call the method getState() of JobStatus (instantiated to "gjsResp")
//query the 1st position of the array. It corresponds to the 1st position
//of our endpoint reference
System.out.println("Job status: " + gjsResp[0].getState());
//test, if there was not any fault while getting the job state
if (gjsResp[0].getFault() == null) {

//now compare the status of the jobs against the list of desired states
//until the job that we have submitted, does not reach the desired state, the

loop will not end.
term = (gjsResp[0].getState() == JobStateEnumeration.SUCCEEDED_EXECUTION) ||
(gjsResp[0].getState() == JobStateEnumeration.FAILED_EXECUTION) ||
(gjsResp[0].getState() == JobStateEnumeration.NOT_EXECUTED) ||
(gjsResp[0].getState() == JobStateEnumeration.RESOURCE_ALLOCATION_FAILED);
Thread.sleep(1000);

} else {
//if fault occured, print error code
System.out.println("Error: " + gjsResp[0].getFault().getErrorCode());
term = true;

} //else (on getfault)
} else {

System.out.println("Error empty vector");
term = true;

} //else (on gjsResp.length)
} while (!term); //end of loop

System.out.println("Succesfull");

} catch (Exception e) {
//we do not determine the exact exception...

e.printStackTrace();
} //catch

} //main
} //Submitter

Paste this code into the Submitter.java class. Replace all of the previously
generated content of the Submitter.java class, because the code provided in this
example already contains all of the necessary content.

482 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

After putting this code into the Submitter.java, your workspace should look similar
to Figure 9-47. We minimized some unimportant workspace windows because
we want to show the most important windows in this figure.

Figure 9-47 Putting the code into Submitter.java

Providing the sample JSDL file
In order to be able to test the functionality of the sample client, you must point to
the existing JSDL file located somewhere in your file system. You can create your
own sample definition or use any existing JSDL file.

In Example 9-34 on page 461 we provide a sample JSDL definition that you can
use for testing purposes. In our scenario this definition is stored in the
D:\testjob.jsdl file.

Example 9-38 Sample JSDL definition

<?xml version="1.0" encoding="UTF-8"?>
<jsdl:jobDefinition xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl"
xmlns:jsdle="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdle"

 Chapter 9. Interacting with Tivoli Dynamic Workload Broker using the Web services interface 483

xsi:schemaLocation="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl JSDL.xsd
http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdle JSDL-Native.xsd" description="Sample Test
job" name="testjob">
 <jsdl:annotation>This job is for testing purposes only. It does not require any special
resource to run.</jsdl:annotation>
 <jsdl:application name="executable">
 <jsdle:executable path="echo TDWB_SAMPLE_JOB"/>
 </jsdl:application>
</jsdl:jobDefinition>

Running the sample client from Eclipse
In this section we describe how to run the sample client from the Eclipse
environment.

In the Package Explorer pane navigate to our project named Client. Then click
the Run icon, as shown in the Figure 9-48. You should see output similar to that
shown in the Figure 9-48.

Figure 9-48 Running the sample client within Eclipse

For the instructions describing how to run the sample client from the command
line see 9.5.4, “Running the sample client from the command line” on page 485.

484 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

9.5.4 Running the sample client from the command line

In this section we describe how to run the sample client from the command line.

To run the sample client from the command line, do the following:

1. Point to correct Java run time.
2. Point to the necessary JAR files.
3. Launch the core application class.

Example 9-39 shows the content of the script that includes all of the necessary
statements for running the sample client from the command line.

Example 9-39 Script for running the sample client from the command line

set WAS_HOME=C:\Program Files\IBM\WebSphere\AppServer
set JAVA_HOME=C:\Program Files\IBM\WebSphere\AppServer\java

set WAS_CP="%WAS_HOME%\plugins\com.ibm.ws.runtimes_6.1.0.jar";
"%WAS_HOME%\runtimes\com.ibm.ws.webservices.thinclient_6.1.0.jar"

"%JAVA_HOME%\bin\java" -cp bin;%WAS_CP% com.ibm.scheduling.main.Submitter %1 %2 %3

In this example we use the Java run time provided with WebSphere Application
Server V6.1. See 9.5.5, “Necessary Java run time and JAR files for running the
client from the command line” on page 485, for more information about running
the client from the command line.

9.5.5 Necessary Java run time and JAR files for running the client
from the command line

In this section we list the Java run time and JAR files that are necessary for
running the client applications leveraging the Tivoli Dynamic Workload Broker
Web services interface. We focus on the environment based on WebSphere
Application Server V6.1.

The Java run time necessary for running the client is JDK 1.4.2 and later.

Each Web service provided by the Tivoli Dynamic Workload Broker server
requires different JAR files.

Note: The example provided in this section is valid for Windows platforms.
However, it can serve as a guide for UNIX/Linux platforms, too.

 Chapter 9. Interacting with Tivoli Dynamic Workload Broker using the Web services interface 485

According to Web Service used, you the need following JAR files to include in
your classpath:

� JobFactory Web Service -
%WAS_HOME%/runtimes/com.ibm.ws.webservices.thinclient_6.1.0.jar

This JAR must be specified in the classpath.

� Job Definition Management Service -
%WAS_HOME%/runtimes/com.ibm.ws.webservices.thinclient_6.1.0.jar

This JAR must be specified in the classpath.

� Job Web Service

This Web service is a special case. Passing the JAR files just to the classpath
is not sufficient. You must use the special way of including the JAR files. See
in Example 9-40 how the client can be run.

Example 9-40 Launching an application leveraging job Web service

call "C:\Program Files\IBM\WebSphere\AppServer\bin\setupCmdLine.bat"

set MYWAS=C:\Program Files\IBM\WebSphere\AppServer
set JAVA_HOME=C:\Program Files\IBM\WebSphere\AppServer\java

"%JAVA_HOME%\bin\java"
-Djava.security.auth.login.config="%app_server_root%\properties\wsjaas_client.conf"
-Djava.ext.dirs="%JAVA_HOME%\jre\lib\ext;%WAS_EXT_DIRS%;%WAS_HOME%\plugins;%WAS_HOME%\lib\WMQ\j
ava\lib" -Djava.naming.factory.initial=com.ibm.websphere.naming.WsnInitialContextFactory
-Dserver.root="%WAS_HOME%" -classpath "%WAS_CLASSPATH%;build;build\lib\SchedulerWSClient.jar"
com.ibm.scheduling.test.TestSubmitWithGetProperties %1 %2 %3

Note: We launch an application named TestSubmitWithGetProperties in
Example 9-40 on page 486, which is different from our sample client
shown in 9.5, “Creating the sample client” on page 435. We do not provide
the source code for this client in this book. We just want to emphasize the
fact that the way of running the clients that leverage Job Factory Web
Service and Job Web Service is different.

Note: The example provided in this section is valid for Windows platforms.
However, it can serve as a guide for UNIX/Linux platforms, too.

486 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Chapter 10. Troubleshooting

In this section we describe how to handle problem situations that you can face
when installing, configuring, or operating Tivoli Dynamic Workload Broker.

We also include descriptions of how to solve the problems that can occur when
integrating Tivoli Dynamic Workload Broker with other products. We provide
hints, solutions, or workarounds where possible.

The following are covered in this chapter:

� “Troubleshooting the Tivoli Dynamic Workload Broker installation” on
page 488

� “DB2 troubleshooting” on page 499

� “Troubleshooting the integration with IBM Tivoli Monitoring” on page 504

� “Troubleshooting the integration with Enterprise Workload Manager” on
page 512

� “Troubleshooting the integration with Tivoli Workload Scheduler” on page 512

� “Troubleshooting the integration with CCMDB” on page 513

10

© Copyright IBM Corp. 2007. All rights reserved. 487

10.1 Troubleshooting the Tivoli Dynamic Workload
Broker installation

Table 10-1 gives you information about the logs and trace files when
troubleshooting the Tivoli Dynamic Workload Broker installation.

Table 10-1 Location of logs and trace files

Component Path Files Content

Tivoli Dynamic
Workoad Broker
server

<WAS_profile_root>
/default/logs/server1

native_stderr.log
native_stdout.log
serverStatus.log
startServer.log
stopServer.log
SystemErr.log
SystemOut.log trace.log

Tivoli Dynamic
Workload Broker server
log files

Agent Manager log files

tmp/TDWB trace_installation.log
msg_installation.log
trace_installation_xml.l
og

Tivoli Dynamic
Workload Broker server
trace files.
The
trace_installation_xml.l
og is for use with
troubleshooting tools.

tmp TDWBSilentResult.log Tivoli Dynamic
Workload Broker server
silent installation result
file

Tivoli Dynamic
Workload Broker Web
Console

<ISC installation
directory>
AppServer/profiles/defa
ult/logs/server1

native_stderr.log
native_stdout.log
serverStatus.log
startServer.log
stopServer.log
SystemErr.log
SystemOut.log trace.log

Web Console logs

488 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

ISC <ISC>/AppServer/profil
es/default/logs/ISC_Por
tal

startServer.log,
stopServer.log

To troubleshoot unable
to start/stop the ISC

Note: If the PID file
exists, this means that
the ISC is up. If the ISC
is down, but the file still
exists, delete the file
before restarting.

<ISC>/PortalServer/log/ SystemOut.log
trace.log
SystemErr.log

SystemOut.log:
Contains the TDWB log
messages

If trace is enabled,
contains the TDWB
trace and log messages

SystemErr.log:
Contains all Java
exceptions

Logging is always
enabled.

Tracing can be enabled
using the ISC built-in
panel found in the
portfolio under “Console
Settings”/”Enable
Tracing

Command-line
interface (CLI)

<ITDWB server
installation directory>

CLItrace.log To change the detail
level for the cli trace file,
change the setting in
the property file.

Component Path Files Content

 Chapter 10. Troubleshooting 489

Tivoli Dynamic
Workload Broker
agent

<ITDWB agent
installation directory>
/ep/logs

rcp.log Agent logs and traces

<ITDWB agent
installation directory>
/subagents/NativeJobE
xecutor/JM/<job id>

out.log, trace.log
jm_exit.properties

Job execution logs and
the exit status of the job

tmp TDWBSilentResult.log Tivoli Dynamic
Workload Broker server
silent installation result
file

tmp/TDWB trace_installation.log
msg_installation.log
trace_installation_xml.l
og

Tivoli Dynamic
Workload Broker agent
trace files
The
trace_installation_xml.l
og is for use with
troubleshooting tools.

<ITDWB agent
installation directory>
/ep/runtime/agent/logs

preinstall.log
agentInstall.log
uninstall.log
nonstop.log

Intallation trace files of
the Tivoli Common
Agent

Tivoli Workload
Scheduler agent

<ITDWB server
installation directory>
WebSphere/AppServer/
profiles/default/logs/ser
ver1

trace.log Tivoli Workload
Scheduler agent log
equivalent to the Tivoli
Workload Scheduler
standard agent log as
saved in a stdlist

tmp/TDWB trace_installation.log
msg_installation.log
trace_installation_xml.l
og

Tivoli Workload
Scheduler agent trace
files
The
trace_installation_xml.l
og is for use with
troubleshooting tools.

Component Path Files Content

Note: The path to the profile depends on the profile that was chosen during
the installation.

490 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

10.1.1 Tivoli Dynamic Workoad Broker Web Console and ISC logs

The following sections provide details of Tivoli Dynamic Workoad Broker Web
Console and ISC installation logs.

ISC installation – install/uninstall log files
All the installation logs files are created in the $TEMP directory.

At install time, the following files are generated:

� tdwbwuinstall.log (install log of the ITDWB Web Console installer)
� ISCAction.log (ISMP log file for the ISCAction discovery task)
� ISCRuntimeInstall.log (ISMP log file for the ISCRuntime install task)
� ISCArchiveFixup.log (ant log for an ISCRuntime’s subtask)
� ISCArchiveUpdatePortalPorts (ant log for an ISCRuntime’s subtask)
� ISCPortalPostConfig.log (ant log for an ISCRuntime’s subtask)
� ISCLogs_<date>_<time>.jar (bundle with all the uninstall logs)

At uninstall time, the following files are generated:

� tdwbwuuninstall.log (uninstall log of the ITDWB Web Console uninstaller)
� ISCRuntimeUninstall.log (ISMP log file for the ISC uninstall task)
� ISCLogBackup.log (ant log for the log backup subtask)
� ISCUninstallConfigTask.log (ant log for an ISC uninstaller’s s subtask)
� ISCLogs_<date>_<time>.jar (bundle with all the uninstall logs)

Tivoli Dynamic Workoad Broker Job Brokering Definition
Console

The Job Brokering Definition Console includes a logging and tracing facility. All
message and trace logs are stored under the <user’s home
directory>\jd_workspace\.metadata directory.

Messages
The Job Brokering Definition Console messags are stored in the standard
Eclipse log file .log. It also contains any errors Eclipse has captured and is very
useful for debugging and FFDC.

Trace
Jlog is used for tracing. Trace files can be found under “tivoli\AWK\logs” in the
.metadata directory by default. The trace logs also wrap after three log files reach
a size of 1 MB each by default. Generally, if there is a problem the errors in the
.log file will be sufficient. If there are not any error messages in the log or they are
not specific enough, the trace will be necessary.

 Chapter 10. Troubleshooting 491

Tracing (configuration)
Tracing is configured through the Logging preference panel. The panel is shown
by clicking Window → Preferences and selecting the Logging category. This
table shows the trace logger, the trace level, and whether tracing is turned on.
They can be configured by selecting the item in the table and selecting a new
setting in the combo box. By default, tracing is set to maximum and is turned on.

Trace logs are configured through the Logging Output preference panel. The
panel is shown by clicking Window → Preferences and selecting the Output
category beneath the Logging category.

In the panel, the log file directory, log file size, and number of files used can be
configured. Additionally, trace can be configured to go to the standard output
console, to a file, or both.

10.1.2 Activating traces for the Tivoli Dynamic Workload Broker
server

To activate traces for the Tivoli Dynamic Workload Broker server:

1. Open a WebSphere Administrative console:

http://<server ip address>:9060/ibm/console

Where 9060 is the default port.

2. Go to Troubleshooting ?logs and then select trace and choose server1.

3. Go to Change log detail levels and then select configuration (persistent,
needs restart) or run time (on running instance, not persistent).

4. In the details section, choose the component that you are interested in (for
example, com.tivoli.agentManager, com.ibm.scheduling, TWSAgent) and the
level of trace required for each (from off to all).

5. Restart the server1 application server as needed.

Note: For additional install and uninstall logs related to the different
components, refer to IBM Tivoli Dynamic Workload Broker Installation and
Configuration, SC32-2282.

492 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

10.1.3 Activatinge traces for the Tivoli Dynamic Workload Broker
Web Console

Do the following to activate traces for the Tivoli Dynamic Workload Broker Web
Console:

1. Stop the ISC server:

stopISC ISC_Portal

2. Edit the file:

<ISC_installation_directory>\AppServer\profiles\default\config\cells
\DefaultNode\nodes\DefaultNode\servers\ISC_Portal\server.xml.

3. Change the traceservice:TraceService definition as follows:

<services xmi:type=?traceservice:TraceService?
xmi:id=?TraceService_1132070385109? enable=?true?
startupTraceSpecification=?com.ibm.scheduling.*=all: *=info?
traceOutputType=?SPECIFIED_FILE? traceFormat=?BASIC?
memoryBufferSize=?8?>

4. Restart the ISC server:

startISC ISC_Portal

10.1.4 Diagnose failure dialogue - using the step list

If the installation fails, you can correct the error and then resume the installation
using the step list window. This window allows you to run the installation steps
one at a time, and lets you change the installation parameters and environment
settings. This is a great benefit and helps reduce the number of failed
installations. This benefit is at the expense of the automatic rollback of the
installation provided by the installation wizard.

The Step List window can be displayed under two circumstances:

� If the Diagnose Failure window is displayed during an installation and you
select the Diagnose failure radio button.

� You have previously tried to install Tivoli Dynamic Workload Broker, but the
installation failed. You can resume the installation as follows:

a. Make sure that CD1 is in the CD drive. Open a command-line interface.
b. Change to the e:\TDWB directory, where e is the CD drive letter.

 Chapter 10. Troubleshooting 493

c. Run one of the following commands:
• Windows:

setupwin32 -resume
• AIX:

setupaix -resume
• Linux:

setuplinux -resume

The Step List window is displayed showing the installation steps. Steps that were
successfully performed during the last installation are shown with their status set
to success. Any steps that failed during the previous installation are shown with
their status set to error.

The Step List window is organized as follows:

� Step #.

� Description.

� Target - The computer where the step is being installed.

� Status - The step status to one of the following:

– Ready - The step is ready to be installed.
– Success - The step has successfully completed.
– Error - The step completed, but errors have been detected.
– Held - One of the prerequisite steps has failed.

� Run next - Start the next step in the list that has a status set to Ready.
� Run all - Start in sequence, all the steps in the list that have a status set to

Ready.

� Stop - Stops the installation. This button is enabled only if you are running
more than one step, and you have clicked Run All. If you are running a single
installation it step will complete, then the installation will stop and wait for your
next instruction.

� Stop on error - Select Stop on error to halt the installation when an error
occurs.

� Search by status - Select the status you want to view, then click Search. The
step list displays the first step in the step list with the selected status.

� Status - The status of the installation engine is one of the following:

– Waiting - User action is required.
– Running - Installation of a step is in progress.
– Stopping - After the current step, the installation engine will stop.
– Searching - The installation engine is searching for product images.

� Details - For each step status, shows the number of steps in that status. Also
displays the total number of steps. If any of the steps are not in the Success

494 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

state after the installation, or you require more information about each
individual step, double-click the step to open the Step window.

The Step window
If you double-click a step in the Step List window, the Step window opens. It has
three tabs: the Status tab, Properties tab, and Output tab.

Status tab
The Status tab shows the status of the installation step: Ready, Success, Error,
or Held. You can change the status from error to ready if the condition that
caused a step to fail has been removed.

Properties tab
The Properties tab gives the user parameters required by the step. These might
be the parameters that you have input in the installation wizard, or values that the
wizard has determined according to the logic of its operations. For example, in
this tab the property DB2 Client Flag is an internal property determined by the
wizard.

Output tab
The Output tab shows the output and any errors that occurred for the installation
step, and also the commands that were performed by the installation. The Output
tab contains the following entries:

� Time stamp - The time that the command was run.

� Return code - The return code for the operation. 0 = OK, < 8 = warning, >= 8
= error.

� DiagRecord - A unique point of failure identification. This can be quoted to
IBM Software Support if you need to request assistance.

� Command - The command that failed.

� Command output - Any output from the command (such as a return code or
an error message number).

� Error log - Shows a list of errors that occurred during the installation of the
step. If errors occurred, examine the errors and then fix them before you try to
change the state of the step to ready in the step status dialog. The procedure
for correcting a step that has failed and resuming the installation is described
in the next section.

Correcting a failed step and continuing the installation
Use the following procedure to correct a failed step and continue the installation:

1. Use the Output tab to determine what problem occurred.

 Chapter 10. Troubleshooting 495

2. Consult the sections in this guide that describe how to resolve problems found
with the installation or the help for the error message that has been displayed.

3. If the solution to the problem requires you to change one of the values that
you entered in the installation wizard, select the Properties tab and make the
required changes. Then click Apply.

4. Click the Status tab, change the status to ready, then click Apply. The Step
list is redisplayed.

5. If you want to run only the step that failed to ensure, for example, that the
change you made has worked, click Run Next. This runs the first step in the
step list (in step number order) with a status of ready. When the step finishes
successfully, you can run the other steps in the installation in the same way (in
sequence) or you can use Run All.

6. To resume the installation, click Run All. The wizard attempts to complete all
outstanding steps, starting with the step that you have modified.

10.1.5 Tivoli Dynamic Workload Broker server troubleshooting

The Tivoli Dynamic Workload Broker server installer uses the Dynamic Failsafe
Installation Framework (CMISMP) to avoid failures.

During the first installation phase, files are installed on the box and minimal
configuration is performed. If anything fails in this phase, the installation is rolled
back.

During the second installation phase, the installation steps are run. If anything
fails, the user is prompted to diagnose the failure.

Server installation trace and logs
the Tivoli Dynamic Workload Broker server installation trace and logs are located
in the following directories:

� /tmp/TDWB/msg_installation.log: This is the log file of the installation. This
file is in the Problem Determination XML format and is intended to be used by
customer and support.

� /tmp/TDWB/trace_installation.log: This is the trace file of the installation. This
file is in plain text and is supposed to be used by support (L2/L3).

� /tmp/TDWB/trace_installation_xml.log: This is the trace file of the installation
in the Problem Determination XML format. This file is intented to be used to
feed a Problem Determination tool.

� /tmp/TDWBSilentResult.log: This file holds a message with the result of the
silent install.

496 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

10.1.6 Tivoli Dynamic Workoad Broker agent installation
troubleshooting

The Tivoli Dynamic Workload Broker agent installer uses the Dynamic Failsafe
Installation Framework (CMISMP) to avoid failures.

During the first installation phase, files are installed on the box and minimal
configuration is performed. If anything fails in this phase, the installation is rolled
back.

During the second installation phase, the installation steps are run. If anything
fails, the user is prompted to diagnose the failure.

The following give possible Tivoli Dynamic Workoad Broker agent (Tivoli
Common Agent) installation failures:

� AWKSRI103E – 113E: The Installation of the Tivoli Common Agent failed
message.

An error is returned by the TCA installer. The message explains what
happend in details.

� AWKSRI130E: The Tivoli Common Agent did not register to the Tivoli Agent
Manager.

The Tivoli Common Agent did not succeed in contacting the Agent Manager
and downloading the certificates.

� AWKSRI131E: The Tivoli Common Agent is not ready to accept requests on
port 9510.

The TCA did not successfully authenticate to the AM (often because of time
differences between the TCA and the AM).

There is a single solution for all three errors listed above. For all of the problems
above, troubleshoot the TCA-AM connection and restart the TCA and wait for the
port 9510 to be opened before completing the installation.

/tmp/TDWB/msg_installation.log: This is the log file of the installation. This file is
in the Problem Determination XML format and is intended to be used by
customer and support.

/tmp/TDWB/trace_installation.log: This is the trace file of the installation. This file
is in plain text and is supposed to be used by support (L2/L3).

Note: 130E and 131E do not occur in disconnected installation.

 Chapter 10. Troubleshooting 497

/tmp/TDWB/trace_installation_xml.log: This is the trace file of the installation in
the Problem Determination XML format. This file is intented to be used to feed a
Problem Determination tool.

/tmp/TDWBSilentResult.log: This file holds a message with the result of the
silent install.

10.1.7 JBDC installation troubleshooting

There is no special infrastructure for troubleshooting/fail-safe installation since it
is very simple. In case of failure the installation is rolled back.

The installer does the following:

1. Copies the appropriate JRE™ on the file system.
2. Copies the JBDC image on the file system.
3. Creates a shortcut in the Start menu.
4. Associates the application to the jsdl file extension.

The trace file of the installation is /tmp/TDWB/trace_installation.log. This file is in
plain text.

10.1.8 JBDC-specific problems

There are a couple of known problems with submitting a large number of jobs all
at once if the job is defined as an embedded script. The XML code may look like
Example 10-1.

Example 10-1 XML code

......
<jsdl:application name="executable">
 <jsdle:executable>
 <jsdle:script>ls -l</jsdle:script>
 </jsdle:executable>
 </jsdl:application>
......

Sometimes a-problem arises in which some jobs succeed and some fail on the
same resource with either of the errors shown in Example 10-2.

Example 10-2 JBDC specific problems

The following error has been generated: Error creating job process.
The reason code is: 13.
Explanation: Permission denied

498 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

or
/tmp/NativeJobExecutorScripts/TDWB_341766610930cd032ebe2ebd72c17c5c.sh:
0403-006 Execute permission denied.

The workaround for this problem is to create a local script on the resources and
change the job definition from Script to Execution File and specify the path to the
script that exists on all of the eligible resources.

10.2 DB2 troubleshooting

Since Tivoli Dynamic Workload Broker V1.1 uses the services of DB2 (Oracle
support will be available in Tivoli Dynamic Workload Broker V1.2), it is important
to know the best practices for troubleshooting DB2.

10.2.1 Diagnostic tools

The following are some of the DB2 diagnostic tools that you can use.

db2diag.log
In DB2 Version 8, the primary log file intended for use by database and system
administrators is the Administration Notification log. The db2diag.log file,
however, is intended for use by DB2 customer support for troubleshooting
purposes.

The db2diag tool serves to filter and format the volume of information available in
the db2diag.log.

Example 1: filtering the db2diag.log by database name.

If there are several databases in the instance, and you wish to only see those
messages that pertain to the database "SAMPLE", you can filter the db2diag.log
as follows:

db2diag -g db=TDWB

Thus, you would only see db2diag.log records that contained "DB: TDWB", such
as those shown in Example 10-3.

Example 10-3 db2diag.log records

2007-04-12-19.08.41.052739-300 I11356253C398 LEVEL: Event

Note: The database name must be specified in all capital letters.

 Chapter 10. Troubleshooting 499

PID : 54434 TID : 1 PROC : db2agent
(TDWB) 0
INSTANCE: db2inst1 NODE : 000 DB : TDWB
APPHDL : 0-284 APPID: G930CC98.C634.070413001041
FUNCTION: DB2 UDB, config/install, sqlfLogUpdateCfgParam, probe:20
CHANGE : CFG DB TDWB: "MaxAppls" <automatic> From: "84" To: "93"

db2support
For collecting information for a DB2 problem, an important DB2 utility is
db2support.

The db2support utility is designed to automatically collect all DB2 and system
diagnostic information available. It also has an optional interactive question and
answer session, which poses questions about the circumstances of your
problem.

Using db2support avoids possible user errors, as you do not need to manually
type commands such as "GET DATABASE CONFIGURATION FOR <database
name>" or "LIST TABLESPACES SHOW DETAIL". Also, you do not require
instructions on which commands to run or what files to collect. Therefore,
information-gathering for problem determination is quicker.

10.2.2 Approach to troubleshooting DB2

Typically, if there is an error interacting with DB2 the evidence will be found in the
WebSphere trace logs. These are the steps to take to identify the problem:

1. Verify the DB2 Error message to diagnose the error:

db2 ? XXXnnnnn

Where XXXnnnnn represents a valid message identifier. For example, db2 ?
SQL1776N displays help about the SQL1776N message.

Example 10-4 SQL1776N message

bash-2.03$ db2 backup tdwb
SQL0104N An unexpected token "tdwb" was found following "BACKUP".
Expected
tokens may include: "DATABASE". SQLSTATE=42601

bash-2.03$ db2 ? SQL0104N

SQL0104N An unexpected token "<token>" was found following
 "<text>". Expected tokens may include:

500 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

 "<token-list>".

Explanation:

A syntax error in the SQL statement was detected at the specified
token following the text "<text>". The "<text>" field indicates
the 20 characters of the SQL statement that preceded the token
that is not valid.

 As an aid to the programmer, a partial list of valid tokens is
provided in the SQLERRM field of the SQLCA as "<token-list>".
This list assumes the statement is correct to that point.

 The statement cannot be processed.

User Response:

Examine and correct the statement in the area of the specified
token.

 sqlcode : -104

 sqlstate : 42601

2. To diagnose DB2-specific problems:

– List applications:

• db2 list applications

• db2 list applications show details

Displays the application program name, authorization ID (user name),
application handle, application ID, and database name of all active
database applications.

– List locks of each application:

• db2pd -db tdwb

Dump all the PD information for the database.

• db2pd -db twdb -locks show -app -tran –logs

Dump detailed information for the database about locks, applications,
and transaction.

• db2 get snapshot for locks on tdwb

Gets detailed information for locks.

 Chapter 10. Troubleshooting 501

• db2 select tableid, tabname from syscat.tables where
tabschema=‘TDWBSCHEMA'

List IDs of tables in the DB, useful to understand output of db2pd
–locks show.

10.2.3 Sample DB2 troubleshooting scenario

Now we walk through a real-life Tivoli Dynamic Workload Broker troubleshooting
scenario, involving DB2.

1. Using the Tivoli Dynamic Workload Broker server’s CLI tools, an error is
returned, as seen in Example 10-5.

Example 10-5 Error when using the Tivoli Dynamic Workload Broker server’s CLI tools

bash-2.03# pwd
/opt/IBM/ITDWB/Server/bin
bash-2.03# ./jobquery.sh -status 0
Call Job Dispatcher to query jobs
AWKCLI056E Job Dispatcher - operation failed AWKJDE009I An error
occurred accessing the job repository database. See the exception log
for details..
bash-2.03# cd /opt/IBM/ITDWB/Server/logs
bash-2.03# vi CLItrace.log

2. The last two entries in the CLItrace.log are shown in Example 10-6.

Example 10-6 Last two entries in the CLItrace.log

Apr 25, 2007 10:38:34 AM com.ibm.scheduling.cli.jd.commands.JobQuery
execute
SEVERE: AWKCLI056E Job Dispatcher - operation failed AWKJDE009I An
error occurred accessing the job repository database. See the exception
log for details..

Apr 25, 2007 10:38:34 AM com.ibm.scheduling.cli.jd.commands.JobQuery
execute
FINE: JD exception - Operation Failed
com.ibm.scheduling.faults.OperationFailedFaultType
 at
com.ibm.scheduling.faults.OperationFailedFaultType_DeserProxy.convert(O
perationFailedFaultType_DeserProxy.java:17)
 at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)

502 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

 at
sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.ja
va:85)

3. Look at WebSphere logs, as in Example 10-7.

Example 10-7 WebSphere logs

bash-2.03# cd
/usr/IBM/WebSphere/AppServer/profiles/default/logs/server1
bash-2.03# vi SystemOut.log

4. Find the entry at the time of the CLItrace.log entries (Example 10-8).

Example 10-8 CLItrace.log entries

[4/25/07 10:38:33:550 CDT] 000002b1 DAO Logger E Exception:
 java.sql.SQLException: Connection
authorization failure occurred. Reason: password invalid.DSRA0010E:
SQL St
ate = null, Error Code = -99,999DSRA0010E: SQL State = null, Error Code
= -99,999

5. Test the db2inst1 user’s password (Example 10-9).

Example 10-9 Testing the db2inst1 user’s password

bash-2.03$ db2 connect to tdwb user db2inst1 using origpw
SQL30082N Attempt to establish connection failed with security reason
"24"
("USERNAME AND/OR PASSWORD INVALID"). SQLSTATE=08001

bash-2.03$ db2 connect to tdwb user db2inst1 using newpwd

 Database Connection Information

 Database server = DB2/6000 8.2.0
 SQL authorization ID = DB2INST1
 Local database alias = TDWB

 Chapter 10. Troubleshooting 503

Conclusion: The db2inst1 user’s password was changed at the operating
system level, but the WebSphere security was not updated with the change.
In order to correct this problem the password either needs to be reset at the
OS level or the WebSphere Admin Console needs to be used to update the
password entries for db2inst1. Figure 10-1 gives an example of where to
make these changes in WebSphere Admin Console:

http://hostname:9061/admin

Figure 10-1 WebSphere Admin Console

In the WebSphere Admin Console the object path to AgentRegistryDBAuth is
one place where the db2 user ID credentials need to be updated. See
Figure 10-1.

10.3 Troubleshooting the integration with IBM Tivoli
Monitoring

In this section we first provide you with information about the log and trace files
for Tivoli Dynamic Workload Broker and Tivoli Monitoring (or Tivoli Enterprise

504 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

http://hostname:9061/admin

Portal or TEP) integration, and then we describe the known problems regarding
this integration.

We also mention a few troubleshooting techniques on the Tivoli Monitoring side,
mostly concerning the Universal Agent.

We do not focus on troubleshooting of Tivoli Monitoring itself, since it is not within
the scope of this book. For more detailed information about troubleshooting Tivoli
Monitoring refer to Getting Started with IBM Tivoli Monitoring 6.1 on Distributed
Environment, SG24-7143, or to Tivoli Monitoring product documentation, such as
Tivoli Monitoring Installation and Setup Guide Version 6.1.0, GC32-9407, or IBM
Tivoli Monitoring Administrator's Guide Version 6.1.0, SC32-9408.

10.3.1 Log and trace files location

The TEP support logs and traces into the WAS log and trace file.

� TEP support log messages can be found in:

<WAS_HOME>/profiles/<PROFILE>/logs/server1/SystemOut.log

� TEP support trace messages can be found in:

<WAS_HOME>/profiles/<PROFILE>/logs/server1/trace.log

Log and trace can be enabled and modified by using the WAS Admin Console.

Component Message ID: TEP support log message ID is: AWKTEPxxxE.

10.3.2 Problems with running the integration script on Windows

When you launch the integration script on Windows, you can receive a message
such as:

C:\Program’ is not recognized as an internal or external command,
operable program or batch file.

This message is caused by an error in the integration script. An internal defect
30542 has been opened and this problem will be fixed in future releases.

However, you can fix the problem by yourself. The cause of the problem is that
the script uses variables that are substituted by a string containing
C:\Program Files\IBM\Websphere, which includes the blank space. The
command is interpreted only to the space and the rest is omitted. To fix this error,
you must quote (““) the occurrences of %WAS_HOME% and %CLASSPATH%
variables.

 Chapter 10. Troubleshooting 505

To correct the error, do the following steps:

1. Open the integration script in any text editor. For the location of the integration
script, see “Default values and file locations” on page 391.

2. Locate the first line of script. It should begin with this:

@%WAS_HOME%\java\bin\java -classpath %CLASSPATH%

The actual line is much longer. We show only the important part.

3. Add the quotes so that they surround the occurrences of the %WAS_HOME%
and %CLASSPATH% variables. The beginning of the modified line should
look like this:

@"%WAS_HOME%\java\bin\java" -classpath "%CLASSPATH%"

(And continue with the rest of the line.)

Now you should be able to run the integration script.

10.3.3 Wrongly interpreted characters in log file path on Windows

The value of the -eventFilePathName parameter can be unpredictably parsed on
the Windows platform in Tivoli Dynamic Workload Broker 1.1. Some characters
preceded by backslash (\) are wrongly interpreted as special characters. A
typical example is \t, which is treated as TAB-sign.

If you are experiencing troubles with the value of the -eventFilePathName
argument, you must use the double backslashes in the path. For instance, you
should use C\\:\\this_path instead of C:\this_path.

An internal defect 30643 has been opened and this problem will be fixed in future
releases.

10.3.4 Cannot specify multiple event types together with parameters

In this section we describe an error in the integration mechanism regarding
specifying multiple event types together with overriding default values. Then we
provide a workaround for this issue.

When launching the integration script and specifying multiple event types (using
-events argument) together with additional parameters, such as -metafileName
or -UAApname, the integration run time is not able to parse more than one event

Note: The double backslashes also precede the colon character.

506 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

type. An integration script abends with an error message, as shown in
Example 10-10.

An internal defect 31336 has been opened for this problem. This error affects
only Tivoli Dynamic Workload Broker v1.1 and will be fixed in future releases.

Example 10-10 Integration script does not accept multiple event types

C:\PROGRA~1\IBM\ITDWB\Server\bin>tepconfig -UAInstDir C:\IBM\ITM
-eventFilePathName C\\:\\TEMP -metafileName c:\meta2.mdl -events SUCC
FAILE
D CANCEL -UAAppName NEW_APP
Apr 2, 2007 9:16:09 AM
com.ibm.scheduling.cli.tep.commands.TEPConfigurator scanInputParms
SEVERE: AWKTEP020E Incorrect input parameter -UAAppName specified.

Possible workarounds are as follows:

� Do not override other values, such as -UAAppName.

� Do not specify the event types while issuing the integration script. Edit the
configuration file TEPListener.properties directly. For each event type append
one new line with this content:

eventType=yes

A sample TEPListener.properties file is shown in the Example 10-11.

Example 10-11 Sample content of TEPListener.properties configuration file

#TEP Listener Configuration Properties
#Mon Apr 02 07:28:07 PDT 2007
EVENTFILEPATH=C\:\\TEMP
MAXEVTSIZE=20
UNKNOWN=yes
SUCC=yes
SUBMITTED=yes
FAILED=yes

For the location of the TEPListener.properties file see 8.4.13, “Default values and
file locations” on page 391.

10.3.5 Cannot remove unwanted event types

In this section we describe an internal defect, which causes any additional run of
the integration script to not delete unwanted event types from the
TEPListener.properties configuration file.

 Chapter 10. Troubleshooting 507

When issuing the integration script for second (or any further) time, and
redefining the list of event types, only new required event types are added, but
the old unwanted event types are not removed. This is an internal error. An
internal defect 31351 was opened for this problem. This error affects only Tivoli
Dynamic Workload Broker v1.1 and will be fixed in future releases.

A possible workaround is to edit the TEPListener.properties file directly. For the
the location of the TEPListener.properties file see 8.4.13, “Default values and file
locations” on page 391.

Delete each unwanted event type by removing the whole row with this content:

unwantedEventType=yes

A sample TEPListener.properties file is shown in Example 10-11 on page 507.

10.3.6 Tivoli Dynamic Workload Broker log file not created

In this section we describe the possible causes of why the Tivoli Dynamic
Workload Broker log file was not created after running the integration script.

If Tivoli Dynamic Workload Broker processed several jobs and some of them
were in the state that you selected for monitoring and the log file was still not
created, do the following steps:

1. Make sure that you have recycled the WebSphere Application Server under
which Tivoli Dynamic Workload Broker server runs. For determining the
proper WebSphere Application Server instance on Windows, see “Recycling
Tivoli Dynamic Workload Broker’s WebSphere Application server” on
page 334.

2. Make sure that you are searching for the correct file in the correct directory.

The name of the file looks like this:

TEPEVENTyyyymmddHHMM.log

For example, a log file that has been created on the 8th of March 2007 at 6:05
p.m. has following name:

TEPEVENT200703081805.log

Note: The log file does not get created until an defined event inside Tivoli
Dynamic Workload Broker occurs. For instance, if you launched the integration
script with the -event CANCEL parameter, only cancelled job instances will be
reported to the log file. Until a job cancellation occurs a log file does not get
created.

508 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

If you did not override the default path, check the log file presence in the
default location. For a list of default locations see 8.4.13, “Default values and
file locations” on page 391. Otherwise, search in the path that you have
specified in the -eventFilePathName argument.

3. If you have overridden the default path by specifying the -eventFilePathName
argument make sure that:

– You did not include the file name in the path. You must not include the file
name. The value of the -eventFilePathName argument must be only a
path.

– The path that you supplied to the -eventFilePathName argument existed
before you recycled the Tivoli Dynamic Workload Broker’s WebSphere
Application Server. If not, you must create the path and then recycle the
WebSphere Application Server once more.

– The path that you supplied to the -eventFilePathName argument on
Windows uses double backslashes.

Example 10-12 shows an example of WebSphere Application Server’s log
file called SystemOut.log. The lines show that TEPListener component did
not find the path. If you focus on the path that TEPListener is searching for,
you can see that the path is not interpreted correctly.

To avoid this problem, follow the steps described in 10.3.3, “Wrongly
interpreted characters in log file path on Windows” on page 506.

Example 10-12 SystemOut.log of WebSphere Application Server - TEPListener

[3/7/07 10:07:16:609 PST] 0000003a TEPIntegratio I AWKTEP013I TEP
listener has been configured to write events to C:logsdwb.log
[3/7/07 10:07:16:609 PST] 0000003a TEPIntegratio E AWKTEP006E The
source file C:logsdwb.log could not be opened.
[3/7/07 10:07:16:609 PST] 0000003a TEPIntegratio E AWKTEP004E Failed
to get an instance of the source file.
[3/7/07 10:07:16:766 PST] 00000039 TEPIntegratio E AWKTEP004E Failed
to get an instance of the source file.

10.3.7 Application for log file monitoring is not visible in Tivoli
Enterprise Portal (out-of-box integration)

In this section we describe the possible causes of why the application designated
for monitoring the Tivoli Dynamic Workload Broker log file is not visible in the
Tivoli Enterprise Portal.

First we describe the actions that are performed by the integration script.

 Chapter 10. Troubleshooting 509

The integration script does the following:

� Configures the TEPListener component (part of the Tivoli Dynamic Workload
Broker server). TEPListener is responsible for logging the defined events into
the log file.

� Imports a metafile into Tivoli Monitoring Universal Agent and thus defines a
new application in the Tivoli Monitoringserver.

If you cannot see in Tivoli Enterprise Portal the application designated for Tivoli
Dynamic Workload Broker log file monitoring, do the following steps:

� Check that there in no refresh pending in the Navigator pane in the Tivoli
Enterprise Portal.

� Check whether the Tivoli Dynamic Workload Broker exists and lines are being
added into it. See 10.3.6, “Tivoli Dynamic Workload Broker log file not
created” on page 508, to for more details about Tivoli Dynamic Workload
Broker log file.

� Make sure that the Universal Agent is able to use a FILE data provider as one
of its data sources.

Even if the Tivoli Monitoring Universal Agent should by default accept text log
files as its data provider, we experienced different behavior in our scenarios.
Unless we explicitly specified a “FILE” data provider in the configuration of
Universal Agent, we did not see any input from the Tivoli Dynamic Workload
Broker server.

For detailed step-by-step instruction including snapshots, see 8.4.6,
“Configuring Universal Agent to accept a FILE data provider” on page 337.

10.3.8 Application for custom script monitoring is not visible in Tivoli
Enterprise Portal

In this section we describe the possible causes of why the application designated
for monitoring the availability of the ITDWB enterprise application is not visible in
the Tivoli Enterprise Portal.

If you have imported the metafile, instructing the Universal Agent to use a custom
script for checking the availability of ITDWB enterprise application, and no new
application has been added into Tivoli Enterprise Portal, do the following steps:

1. Check that there in no refresh pending in the Navigator pane in the Tivoli
Enterprise Portal.

2. Make sure that the metafile points to an existing script. Check the value of
SOURCE keyword in the metafile.

510 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

If the script does not exist or is located in another path, create it or copy into
the proper location (corresponding to the value of the SOURCE keyword in
the metafile). After that no additional actions are required. The Universal
Agent discovers the script file by itself and starts collecting the data from the
target system. See “Checking the log of Universal Agent’s data provider” on
page 511 for instructions about how to check whether the universal agent is
able to find the custom script.

Checking the log of Universal Agent’s data provider
In this section we provide a short example of how to look into the log of Universal
Agent’s data provider.

Expand the branch of the Universal Agent on the corresponding server (Tivoli
Dynamic Workload Broker server) and look into the DPLOG view. You may find
useful messages about particular Universal Agent’s data providers.

Figure 10-2 shows the DPLOG view with the notification of a missing script file.

Figure 10-2 Universal Agent’s DPLOG view - non existing script

 Chapter 10. Troubleshooting 511

10.4 Troubleshooting the integration with Enterprise
Workload Manager

This section contains information about where to look when you have problems
with the integration of the Tivoli Workload Scheduler and Enterprise Workload
Manager.

10.4.1 Log and trace files location

The Tivoli Dynamic Workload Broker Enterprise Workload Manager Extension
logs and traces into the WAS log and trace file.

� The log messages,can be found in:

<WAS_HOME>/profiles/<PROFILE>/logs/server1/SystemOut.log

� The trace messages can be found in:

<WAS_HOME>/profiles/<PROFILE>/logs/server1/trace.log

10.4.2 Log and trace enablement

Logs and traces can be enabled and modified by using the WAS Admin Console
(EWLMBvc component).

Component Message ID: EWLM Extension log message ID is: AWKEWLxxxE.

10.5 Troubleshooting the integration with Tivoli
Workload Scheduler

In this section we provide information about Tivoli Workload Scheduler
integration troubleshooting and unsupported functions.

10.5.1 Log and trace files location

The Tivoli Workload Scheduler Agent logs and traces into the WAS log and trace
file.

� The Tivoli Workload Scheduler Agent log messages can be found in:

<WAS_HOME>/profiles/<PROFILE>/logs/server1/SystemOut.log

512 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

� Tivoli Workload Scheduler Agent trace messages can be found in:

<WAS_HOME>/profiles/<PROFILE>/logs/server1/trace.log

Logs and traces can be enabled and modified by using WAS Admin Console
(TWSAgent component).

Component Message ID: TWS Agent log message ID is: AWKTSAxxxE.

10.5.2 Debugging feature

It is possible to make Tivoli Workload Scheduler Agent trace more details about
messages and events received and sent to the Tivoli Workload Scheduler, by
enabling the DEBUG feature.

We need to add the TWS.Agent.Enable.Debug=true property into the
TWSAgentConfig.properties file. (The TWSAgent application restart is required.)

10.5.3 Unsupported functions

The following Tivoli Workload Scheduler features are not supported by the Tivoli
Workload Scheduler Agent:

� SSL communication with its parent
� Extended Agent options
� Switch fault tolerance
� Return code mapping
� Centralized scripts

10.6 Troubleshooting the integration with CCMDB

In this section we provide information about where to look when you have
problems with the integration of CCMDB and Tivoli Dynamic Workload Broker.

10.6.1 Log and trace files location

The serviceability of the ImportDataFromCMDB CLI follows the same rules as all
of the other CLIs.

Note: The Switch Manager function works, but the backup fault tolerance is
not supported.

 Chapter 10. Troubleshooting 513

The CCMDB Cli logs and traces into the CLItrace.log file in the log directory
under server installation directory
(<TDWB_INSTALLATION_DIR>\log\CLItrace.log).

Log and trace can be enabled and modified by changing the
CLIConfig.properties file.

Component Message ID: CCMDB CLI log message ID is: AWKCDMxxxE.

The CMDB API client has implemented its own log, and it is available under
<TDWB_INSTALLATION_DIR>\log\CMDB.log.

514 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Chapter 11. Managing Tivoli Dynamic
Workload Broker jobs using
Tivoli Workload Scheduler
for z/OS end-to-end

An enterprise that selects to integrate the Tivoli Dynamic Workload Broker with
the Tivoli Workload Scheduler for z/OS end-to-end further expands and
enhances the enterprise workload automation solution. Whether you are a
planner, operator, administrator, systems programmer, or architect, you need an
understanding of how this integration is done and how Tivoli Dynamic Workload
Broker jobs are managed using Tivoli Workload Scheduler for z/OS end-to-end.

The following topics are covered in this chapter:

� “Introduction” on page 517

� “Tivoli Dynamic Workload Broker and Tivoli Workload Scheduler for z/OS
end-to-end architecture” on page 519

� “Installation and configuration considerations” on page 539

� “Planning and choreography” on page 552

� “Planning and choreography advanced topics” on page 565

11

© Copyright IBM Corp. 2007. All rights reserved. 515

� “Monitoring and control” on page 602

� “Terminology” on page 622

516 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

11.1 Introduction

IBM Tivoli Workload Scheduler for z/OS provides advanced workload planning
and choreography services, along with extensive calendar and event-triggering
services. From a single point of control, it drives and controls the workload
processing at both local and remote mainframe sites.

IBM Tivoli Workload Scheduler for z/OS end-to-end is an enterprise solution that
combines the strengths of Tivoli Workload Scheduler for z/OS and Tivoli
Workload Scheduler, allowing you to schedule and control jobs on mainframe,
Windows, and UNIX environments, for truly distributed scheduling. Tivoli
Workload Scheduler for z/OS is used as the planner for the job scheduling
environment. Tivoli Workload Scheduler for z/OS controller and trackers are used
to schedule on mainframe. Tivoli Workload Scheduler domain managers,
standard, and fault-tolerant agents are used to schedule on the distributed
platforms.

In the z/OS mainframe environment, execution of the Tivoli Workload Scheduler
for z/OS scheduled jobs is managed by IBM Workload Manager for z/OS (WLM).
Using WLM, the installation classifies the work running on the z/OS operating
system in distinct service classes and defines goals for them that express the
expectation of how the work should perform. WLM uses these goal definitions to
manage the work across all systems of a sysplex environment.

IBM Tivoli Dynamic Workload Broker allows you to further extend Tivoli Workload
Scheduler for z/OS end-to-end by matching and routing batch workloads to the
best available resources in the distributed environment in an on demand manner.
Dynamic brokering provides dynamic optimization of workload processing based
on the performance of the scheduling infrastructure and workload demands.

Tivoli Dynamic Workload Broker integrates with the Tivoli Workload Scheduler for
a z/OS end-to-end architecture to schedule, monitor, and manage Tivoli Dynamic
Workload Broker jobs through the Job Scheduling Console or Tivoli Workload
Scheduler for the z/OS ISPF dialog. The Tivoli Workload Scheduler for the z/OS
end-to-end administrator can define in the Tivoli Workload Scheduler for z/OS
end-to-end database job definitions and job streams to be assigned to computers
or resources associated to the Tivoli Dynamic Workload Broker server.

 Chapter 11. Managing Tivoli Dynamic Workload Broker jobs using Tivoli Workload Scheduler for z/OS

11.1.1 Integration benefits

Tivoli Dynamic Workload Broker provides a series of improvements for
distributed job scheduling on your existing Tivoli Workload Scheduler for z/OS
end-to-end solution:

� Virtualization of the scheduling infrastructure by providing an abstraction layer
on the resource selection

� Workload balancing by routing jobs among a group of resources according to
the availability and activity levels of those resources

� SOA job brokering services

� Scheduling of IBM WebSphere Java 2 Enterprise Edition (J2EE) applications

� Automatic routing of jobs to the most appropriate resources based on job
requirements

� Enhanced flexibility in workload distribution and running

� Automatic routing of jobs for which submission failed to appropriate resources

Tivoli Workload Scheduler for z/OS end-to-end also provides the following
features to Tivoli Dynamic Workload Broker:

� End-to-end scheduling infrastructure
� Advanced scheduling, calendaring, planning, and choreographing capabilities

11.1.2 Terminology

Tivoli Workload Scheduler for z/OS and Tivoli Workload Scheduler are two
somewhat different software programs, each with partially its own history and
terminology. With Tivoli Dynamic Workload Broker entering the scene some new
concepts and terminology also become part of your daily life. For this reason,
there are sometimes two or more different and interchangeable names for the
same thing. Other times, a term used in one context can have a different
meaning in another context. The terms and acronyms that are used throughout
this chapter are defined in 11.7, “Terminology” on page 622.

518 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

11.2 Tivoli Dynamic Workload Broker and Tivoli
Workload Scheduler for z/OS end-to-end
architecture

In this section we discuss the Tivoli Workload Scheduler for z/OS end-to-end
architecture, the Tivoli Dynamic Workload Broker architecture, and the ways that
you can integrate them.

Tivoli Dynamic Workload Broker and Tivoli Workload Scheduler for z/OS
end-to-end architecture integration can be done in several ways. Either way,
enterprise end-to-end scheduling is an integrated solution for workload
scheduling in an environment that includes both mainframe and non-mainframe
systems. End-to-end workload automation helps you manage and coordinate up
to hundreds of thousands of workloads, executing the correct workload at the
correct time and in the correct sequence.

Because end-to-end scheduling involves running programs on multiple platforms,
it is important to understand how the different components work together when
selecting the architecture.

It is also important to consider how the combination of processes, procedures,
people, and end-to-end scheduling architecture helps you reach your business
goals and service level agreements (SLAs). The benefits of this solution provides
an efficiency to business processes for your enterprise. The results are
increasing customer satisfaction, reducing or eliminating complaints from
business partners, and improving the brand or company.

11.2.1 Tivoli Workload Scheduler for z/OS end-to-end scheduling

In the Tivoli Workload Scheduler for z/OS end-to-end scheduling network, a
mainframe computer acts as the single point of control for job scheduling across
the entire enterprise. Tivoli Workload Scheduler for z/OS is used as the planning
central for the job scheduling environment. Tivoli Workload Scheduler
fault-tolerant agents run work on the non-mainframe platforms, such as UNIX,
Windows, and Linux.

 Chapter 11. Managing Tivoli Dynamic Workload Broker jobs using Tivoli Workload Scheduler for z/OS

Scheduling components
Components involved in Tivoli Workload Scheduler end-to-end scheduling are:

� Tivoli Workload Scheduler for z/OS engine
The engine comprises two subcomponents, the controller and the server.
– Tivoli Workload Scheduler for z/OS controller

Manages database objects, creates plans with the workload, and executes
and monitors the workload in the plan.

– The Tivoli Workload Scheduler for z/OS server

Acts as the Tivoli Workload Scheduler master domain manager. The Tivoli
Workload Scheduler for z/OS server is the focal point for all
communication to and from the Tivoli Workload Scheduler network.

� Tivoli Workload Scheduler domain managers, fault-tolerant agents, standard
agent and extended agents
Domain managers serve as communication hubs between Tivoli Workload
Scheduler for z/OS and the fault-tolerant agents in each domain.
Fault-tolerant agents are usually where the majority of distributed jobs are
run.

Standard agents and extended agents are used for special scheduling
purposes. A standard agent is connected to a domain manager from where it
receives the request and information to run a job.

520 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Figure 11-1 shows a Tivoli Workload Scheduler network managed by a Tivoli
Workload Scheduler for z/OS engine. This is accomplished by connecting Tivoli
Workload Scheduler domain managers and Fault Tolerant Agents directly to the
Tivoli Workload Scheduler for z/OS engine. The Tivoli Workload Scheduler for
z/OS engine acts as the master domain manager of the Tivoli Workload
Scheduler network.

Figure 11-1 Tivoli Workload Scheduler for z/OS end-to-end scheduling architecture

User interfaces
Users interact with Tivoli Workload Scheduler for z/OS scheduling components
using one or more of the following user interfaces:

� Job Scheduling Console

Job Scheduling Console (JSC) is a common graphical user interface (GUI) to
both the IBM Tivoli Workload Scheduler and IBM Tivoli Workload Scheduler
for z/OS scheduling engines.

DomainA DomainB

OS/400

Master
Domain
Manager

OPCMASTER

MASTERDM

AIX
Domain
Manager

DMA

AIX
Domain
Manager

DMB

AIX Windows 2003 Solaris

DomainA DomainB

FTA1 FTA2 FTA3 FTA4

Linux

z/OS

Server

Controller

TWS for z/OS Engine

AIX

FTA0

 Chapter 11. Managing Tivoli Dynamic Workload Broker jobs using Tivoli Workload Scheduler for z/OS

� Tivoli Dynamic Workload Console

The Tivoli Dynamic Workload Console is a Web-based user interface for Tivoli
Workload Scheduler and Tivoli Workload Scheduler for z/OS.

� Tivoli Workload Scheduler for z/OS ISPF panels

This user interface runs under Interactive System Productivity Facility (ISPF)
on z/OS. It is available for Tivoli Workload Scheduler for z/OS.

Database and plan components
Key database and plan components in Tivoli Workload Scheduler for z/OS
end-to-end are:

� Workstation database

The workstation database contains Tivoli Workload Scheduler for z/OS
controller definitions for workstations in both the mainframe and end-to-end
scheduling network.

� Job stream database (Application Description database)

The Job Stream database contains planning and choreography information
for jobs in both the mainframe and end-to-end scheduling network.

� Long-term plan

The long-term plan contains high-level job stream information for a period of
up to four years.

� Current plan

The current plan contains the detailed workload for both the mainframe and
the end-to-end scheduling network. The current plan typically covers a period
of 24 hours.

� Symphony file

The symphony file contains the part of the workload that is defined to run on
fault-tolerant workstations, standard agents, and extended agents. It also
contains information about the end-to-end network topology and
configuration.

522 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Figure 11-2 is a high-level picture showing how database and plan components
are related and used during current plan and symphony file creation.

Figure 11-2 Tivoli Workload Scheduler for z/OS end-to-end current plan and symphony
file creation

Symphony file distribution
Tivoli Workload Scheduler for z/OS controller creates the current plan. It also
creates the symphony file and sends it to the Tivoli Workload Scheduler for z/OS
server.

The Tivoli Workload Scheduler for z/OS server, in its role as master domain
manager, distributes the symphony file to the distributed network of domain
managers and fault tolerant agents. Each subordinate domain manager in turn
distributes the symphony file to its subordinate domain managers and
fault-tolerant agents.

Standard agents receive a light version of the symphony file containing only
domain, workstation, and user definitions.

Databases

Current Plan

1. Extract end-to-end job streams
2. Add end-to-end job details
3. Add topology (domain, FTA/SA/XA)

old
Current Plan

1. Remove completed job streams
2. Add job streams for next day/period
3. Update resource and workstations

Special
Resources

Job
Streams

Script
library

Workstations

Topology
Definitions

new
Current Plan

new
Symphony file

Symphony file

End-to-end
definitions

Long Term Plan

 Chapter 11. Managing Tivoli Dynamic Workload Broker jobs using Tivoli Workload Scheduler for z/OS

Figure 11-3 shows how the symphony file is distributed to the Tivoli Workload
Scheduler for the z/OS end-to-end network.

Figure 11-3 Symphony file distribution to Tivoli Workload Scheduler for z/OS end-to-end
network

Planning and choreography
Scheduling analysts perform planning and choreography by interacting with Tivoli
Workload Scheduler for z/OS controller using the available user interfaces.

Tivoli Workload Scheduler for z/OS provides extensive planning and
choreography capabilities including calendaring and periods, definition of job
stream run cycles in business terms, job dependencies, submit-on time
requirements, and job resource requirements (using the special resource
concept). Jobs are always defined as being part of job streams.

A key concept in Tivoli Workload Scheduler for z/OS is that every job, mainframe
or distributed, is defined to run on one, and only one, workstation. For distributed
jobs this has the consequence that changing the job to run on another computer
implies that the job definition must be changed to use another workstation.

TWS for z/OS end-to-end
MASTERDM

AIX
AIX

AIX Windows 2003 Solaris

TWS DomainA TWS DomainB

FTA1 FTA2 FTA3 FTA4

Linux

TWS for z/OS
current plan

Symphony
file

z/OS

AIX

FTA0

Domain
Manager

DMA

Domain
Manager

DMB

Master
Domain
Manager

OPCMASTER

524 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Job JCL and script definitions
Tivoli Workload Scheduler for z/OS end-to-end uses two types of definitions
describing the job execution details:

� Job JCL definitions for mainframe jobs

Mainframe job JCL definitions are defined using the z/OS Job Control
Language (JCL). Job JCL definitions are called JCL members and are kept in
z/OS data sets on mainframe.

Each Tivoli Workload Scheduler for z/OS mainframe job references a
corresponding job JCL member through the job name entity.

� Job script definitions for distributed jobs

There are two types of distributed jobs in Tivoli Workload Scheduler for z/OS
end-to-end, centralized script jobs and non-centralized script jobs:

– Job script definitions for centralized script jobs

Job script definitions for centralized script jobs are called centralized script
members and are kept in z/OS data sets on the mainframe. Centralized
script members contain the script source (for example, the UNIX script
source).

Each centralized script job references a corresponding centralized job
script member through the job name entity.

Copies of script definitions for centralized jobs are included in the current
plan.

– Job script definitions for non-centralized script jobs

Job script definitions for non-centralized script jobs are called SCRPTLIB
members and are kept in z/OS data sets on teh mainframe.

Non-centralized script members contain a script or command name and, if
needed, a path. The script source (for example, the UNIX script source) is
kept on the distributed computer.

Each non-centralized script job references a corresponding SCRPTLIB
member through the job name entity.

Copies of script definitions for non-centralized jobs are included in the
symphony file.

Scheduling analysts:

� Maintain job JCL, centralized script members, and SCRPTLIB members by
interacting with the z/OS ISPF user interface.

� Maintain the distributed script source by interacting with user interfaces on the
distributed computers, such as Wordpad on Windows and VI editor on UNIX.

 Chapter 11. Managing Tivoli Dynamic Workload Broker jobs using Tivoli Workload Scheduler for z/OS

Job submission
Tivoli Workload Scheduler for z/OS end-to-end submission of mainframe jobs is
controlled by job information in the current plan.

Submission of distributed jobs is controlled by job information in the current plan
or the symphony file, depending on the type of job:

� When a centralized script type job is ready to run, the Tivoli Workload
Scheduler for the z/OS end-to-end engine retrieves the corresponding script
member and sends it to the fault-tolerant agent (FTA). The FTA submits the
job to the operating system.

� When a non-centralized script type job is ready to run, the fault-tolerant agent
retrieves the job script definition from the local symphony file and submits the
job to the operating system.

Job tracking
Tivoli Workload Scheduler for z/OS end-to-end automatically tracks progress of
the enterprise workload. Job progress information from both mainframe and
distributed jobs are captured and sent to the Tivoli Workload Scheduler for z/OS
controller in real time. The controller automatically maintains job stream and job
status information in the current plan based on job progress information received.

Job progress information from distributed jobs is used by domain managers to
maintain real-time job stream and job status information in local symphony files.

Monitoring and control
Operations analysts and scheduling analysts monitor and control workload
progress and status by interacting with Tivoli Workload Scheduler for z/OS
controller using the available user interfaces. Controlling the workload includes
tasks such as adding job streams ad hoc to cthe urrent plan, job error handling,
and performing job recovery.

Tivoli Workload Scheduler for z/OS provides extensive real-time capabilities for
automatic handling and recovery of errors and outage situations, helping you
minimize the impact on the enterprise workload.

Note: A Tivoli Workload Scheduler standard agent receives job submission
requests from its domain manager. The domain manager retrieves the script
definition and includes it in the job submission request.

526 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

11.2.2 Tivoli Dynamic Workload Broker scheduling architecture

In this section we briefly revisit concepts and components on the Tivoli Dynamic
Workload Broker scheduling architecture that are key when discussing
integration of the two architectures:

� Tivoli Dynamic Workload Broker server

The Tivoli Dynamic Workload Broker architecture consists of a managing
server, which manages its agents. The server interacts with users via its
clients (user interfaces).

The main purpose of the Tivoli Dynamic Workload Broker server is to
determine the best fitting resource (that is, computer) for each job it is
instructed to submit.

� Tivoli Workload Scheduler agent

The Tivoli Workload Scheduler agent emulates a Tivoli Workload Scheduler
standard agent. The Tivoli Workload Scheduler agent receives job launch
requests from a Tivoli Workload Scheduler domain manager and forwards the
requests to the Tivoli Dynamic Workload Broker server.

� Tivoli Dynamic Workload Broker agents

An agent provides two major services: follows the instructions incoming from
the server (such as a request to run a job), and notifies the server of hosting
system utilization (such as CPU load and memory usage).

� Job Repository

The Job Repository is managed by the Tivoli Dynamic Workload Broker
server and keeps three types of data:

– Job definitions

Job definitions are stored in an XML type format using the Job Submission
Description Language (JSDL).

– Job instances

– Historical data on job instances

� Job definitions and job instances

Job definitions contain execution and resource usage characteristics for the
jobs submitted by the Tivoli Dynamic Workload Broker server.

When a job is submitted a job instance is created.

� Computer

A computer in Tivoli Dynamic Workload Broker terminology is a place where
jobs are executed. A computer is represented by the Tivoli Dynamic Workload
Broker agent installed on it.

 Chapter 11. Managing Tivoli Dynamic Workload Broker jobs using Tivoli Workload Scheduler for z/OS

� Resource definitions

In Tivoli Dynamic Workload Broker you can define two types of resources:

– Logical resources

Logical resources allow you to define a logical resource name and
associate that name with one or several computers. A job requiring a
logical resource is only eligible for submission to computers that have the
logical resource associated.

– Resource groups

Resource groups are used to group computers, logical resources, or both.
For example, a job requiring a computer resource group is only eligible for
submission to computers that are members of the resource group.

� User interfaces

There are three user interfaces:

– Tivoli Dynamic Workload Broker Web Console

A Web-based user interface for managing the Tivoli Dynamic Workload
Broker environment. It allows you to define computers and resource
definitions, edit job definitions, submit and monitor jobs, and recover failing
jobs or resources.

– Job Brokering Definition Console

The Job Brokering Definition Console is a graphical tool that serves as a
user-friendly interface for creating Tivoli Dynamic Workload Broker job
definitions.

– Command-line interface

The command-line interface (CLI) allows the Tivoli Dynamic Workload
Broker user to perform all of the essential operations necessary for
scheduling and managing jobs.

The Tivoli Dynamic Workload Broker architecture is described in detail in
Chapter 2, “Tivoli Dynamic Workload Broker architecture” on page 25.

Note: In this chapter the term Tivoli Workload Scheduler agent always refer to
the Tivoli Dynamic Workload Broker component unless otherwise stated. In
some of the figures Tivoli Workload Scheduler agent is abbreviated as TWS
Agent.

528 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

11.2.3 Integrated Tivoli Dynamic Workload Broker and Tivoli
Workload Scheduler for z/OS end-to-end architecture

Tivoli Dynamic Workload Broker and Tivoli Workload Scheduler for z/OS
end-to-end are connected using the Tivoli Workload Scheduler agent. The Tivoli
Workload Scheduler agent emulates a Tivoli Workload Scheduler standard agent
and is connected to a Tivoli Workload Scheduler domain manager. It can also be
connected to the Tivoli Workload Scheduler for z/OS end-to-end master domain
manager.

The Tivoli Workload Scheduler agent and the Tivoli Dynamic Workload Broker
server are both running on the same WebSphere instance, which means they are
also running on the same physical server. Hence, choosing an integration
architecture for Tivoli Workload Scheduler agent and Tivoli Workload Scheduler
for z/OS end-to-end also means that you choose where you install your Tivoli
Dynamic Workload Broker server.

Note: Starting with Tivoli Workload Scheduler for z/OS end-to-end Version
8.3, standard agents and fault-tolerant agents can connect directly to the Tivoli
Workload Scheduler for z/OS end-to-end master domain manager
(OPCMASTER). In previous releases of Tivoli Workload Scheduler for z/OS,
end-to-end standard agents and fault-tolerant agents must connect using
inter-positioned Tivoli Workload Scheduler domain managers.

Note: Tivoli Dynamic Workload Broker Version 1.1 only supports a single
Tivoli Workload Scheduler agent.

 Chapter 11. Managing Tivoli Dynamic Workload Broker jobs using Tivoli Workload Scheduler for z/OS

Figure 11-4 shows an example where the Tivoli Dynamic Workload Broker server
and Tivoli Workload Scheduler agent are running on an AIX machine. The Tivoli
Workload Scheduler agent is connected to a Tivoli Workload Scheduler domain
manager (in DomainA), which in turn is connected to the Tivoli Workload
Scheduler for z/OS end-to-end master domain manager.

Figure 11-4 Tivoli Workload Scheduler agent connectivity example

Planning and Choreography integration
Integration allows you to combine Tivoli Workload Scheduler for z/OS end-to-end
planning and choreography with the Tivoli Dynamic Workload Broker capability to
dynamically select a target resource for job submission among a group of
computers.

The Tivoli Workload Scheduler for z/OS current plan contains all jobs to be
scheduled. When Tivoli Workload Scheduler for z/OS end-to-end and Tivoli
Dynamic Workload Broker are integrated the current plan includes:

� Jobs to be run on mainframe servers. These jobs are defined on Tivoli
Workload Scheduler for z/OS computer type workstations representing the
target z/OS servers.

� Jobs to be run on distributed servers. These jobs are defined on Tivoli
Workload Scheduler for z/OS end-to-end fault-tolerant workstations
representing the target distributed servers.

TDWB
Server

TWS for z/OS end-to-end
MASTERDM

z/OS

Domain
Manager

DMA

AIX

AIX

TWS DomainA Tivoli Dynamic Workload Broker

FTA1 FTA2

Linux

TWS Agent
AIX

AIX Windows 2003

TDWB
Agent

TDWB
Agent

TDWB
Agent

AIX

TDWB
Agent

Windows 2003

Master
Domain
Manager

OPCMASTER

530 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

� Jobs to be run by Tivoli Dynamic Workload Broker. These jobs are defined on
a Tivoli Workload Scheduler for z/OS end-to-end workstation representing the
Tivoli Workload Scheduler agent.

Figure 11-5 shows an example of a Tivoli Workload Scheduler for z/OS
end-to-end job stream with five jobs:

� Job1 is a z/OS job defined to run on workstation CPU1. It is submitted by the
Tivoli Workload Scheduler for z/OS for execution on z/OS.

� Job2 is an AIX job defined to run on workstation FTA1. It is submitted by the
Tivoli Workload Scheduler fault-tolerant agent FTA1 for execution on AIX.

Figure 11-5 Job stream with z/OS, AIX, and Tivoli Dynamic Workload Broker jobs

� Job3 is a job defined to run on workstation TDWB.

Domain manager DMA:

– Retrieves the job3 definition from the symphony file. This includes the
name of the Tivoli Dynamic Workload Broker job definition to be launched.

TDWB
Server

TWS for z/OS end-to-end
MASTERDM

z/OS

Domain
Manager

DMA

AIX

AIX

TWS DomainA Tivoli Dynamic Workload Broker

FTA1

TWS Agent
AIX

AIX Windows 2003

TDWB
Agent

TDWB
Agent

TDWB
Agent

AIX

TDWB
Agent

Windows 2003

Master
Domain
Manager

OPCMASTER

Job1

Job2

Job4

Job5

WKST=CPU1

TDWB

CPU1

Job stream

Job1

WKST=TDWB

WKST=TDWB

WKST=TDWB

WKST=FTA1

Job2 Job4

Job3

Job3

Job5

Job4 defined with affinity to Job3

Symphony
file

TWS for z/OS
current plan

Symphony
file

 Chapter 11. Managing Tivoli Dynamic Workload Broker jobs using Tivoli Workload Scheduler for z/OS

– Sends a job launch request to the Tivoli Workload Scheduler agent, which
in turn transfers the job launch request to the Tivoli Dynamic Workload
Broker server.

The Tivoli Dynamic Workload Broker server:

– Retrieves the JSDL definition corresponding to Job3.

– Allocates resources to Job3, including a target computer. (Logical and
physical resource requirements for Job3 as well as current resource usage
data are used to find a best-fit resource.)

– Submits a job request to its agent on the selected AIX machine.

– Waits for the execution result and when it arrives forwards it to the Tivoli
Workload Scheduler agent, which in turn forwards it to domain manager
DMA.

� Job4 is a job defined to run on workstation TDWB, including an affinity
definition specifying that Job4 must run on the same resource as Job3 did. A
job launch request is sent by domain manager DMA to the Tivoli Workload
Scheduler agent, which in turn transfers the job launch request to the Tivoli
Dynamic Workload Broker server.

The Tivoli Dynamic Workload Broker server:

– Retrieves the JSDL definition corresponding to Job4 and submits it to the
agent on the same AIX machine that executed Job3

– Waits for execution result and when it arrives forwards it to the Tivoli
Workload Scheduler agent, which in turn forwards it to domain manager
DMA

� Job5 is a job defined to run on workstation TDWB. A job launch request is
sent by Tivoli Workload Scheduler domain manager DMA to the Tivoli
Workload Scheduler agent, which in turn transfers the job launch request to
the Tivoli Dynamic Workload Broker server.

Since Job5 is not defined with any affinity, the Tivoli Dynamic Workload
Broker server performs the same actions as described for Job3. But this time
another AIX machine is selected as optimal for execution.

11.2.4 Examples of integration architectures

Tivoli Dynamic Workload Broker and Tivoli Workload Scheduler for z/OS
end-to-end can be integrated in several ways. We provide you with some typical
examples along with key characteristics. The purpose is to aid you in choosing
an architecture that fits into your environment and meets your needs and
requirements.

532 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Distributed Tivoli Dynamic Workload Broker directly connected to Tivoli
Workload Scheduler for z/OS server

Figure 11-6 shows an integration where:

� The Tivoli Dynamic Workload Broker server is running on a distributed
Windows 2003 server with its Tivoli Workload Scheduler agent connected
directly to the Tivoli Workload Scheduler for z/OS V8.3 server.

� The existing distributed network, DomainA, is separated from the workload
broker environment.

Figure 11-6 Distributed Tivoli Dynamic Workload Broker directly connected to Tivoli
Workload Scheduler for z/OS server

TWS for z/OS end-to-end
MASTERDM

Master
Domain
Manager

OPCMASTER

z/OS

Domain
Manager

DMA

AIX AIX Windows 2003

TWS DomainA Tivoli Dynamic Workload Broker

FTA1 FTA2 TDWB
Agent

TDWB
Agent

Linux

TDWB
Agent

AIX

TDWB
Server

AIX

TWS Agent

TDWB
Agent

Windows 2003

Windows 2003

 Chapter 11. Managing Tivoli Dynamic Workload Broker jobs using Tivoli Workload Scheduler for z/OS

Distributed Tivoli Dynamic Workload Broker connected to interpositioned
Tivoli Workload Scheduler domain manager

Figure 11-7 shows an integration where:

� The Tivoli Dynamic Workload Broker server is running on a distributed AIX
server with its Tivoli Workload Scheduler agent connected to interpositioned
Tivoli Workload Scheduler domain manager DMA.

� This is a type of architecture that must be used if Tivoli Workload Scheduler
for z/OS end-to-end is Version 8.2 or earlier.

� Job scheduling on computers managed by the Tivoli Dynamic Workload
Broker requires domain manager DMA to be up and running. Domain DMA
and the broker network are used for the same business area with the same
availability requirements.

Figure 11-7 Distributed Tivoli Dynamic Workload Broker connected to interpositioned
Tivoli Workload Scheduler domain manager

TDWB
Server

TWS for z/OS end-to-end
MASTERDM

z/OS

Domain
Manager

DMA

AIX

AIX

TWS DomainA Tivoli Dynamic Workload Broker

FTA1 FTA2

Linux

TWS Agent
AIX

AIX Windows 2003

TDWB
Agent

TDWB
Agent

TDWB
Agent

AIX

TDWB
Agent

Windows 2003

Master
Domain
Manager

OPCMASTER

534 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Tivoli Dynamic Workload Broker on zLinux directly connected to Tivoli
Workload Scheduler for z/OS server

Figure 11-8 shows an integration where:

� The Tivoli Dynamic Workload Broker server is running on zLinux.

� Tivoli Workload Scheduler agent connects directly to the Tivoli Workload
Scheduler for z/OS server.

� An existing AIX server farm managed by the Tivoli Dynamic Workload Broker
is being migrated to zLinux. zLinux is implemented with the Tivoli Workload
Scheduler agent installed.

� The migration of workloads from AIX to zLinux is done seamlessly using the
capabilities of Tivoli Dynamic Workload Broker.

Figure 11-8 Tivoli Dynamic Workload Broker on zLinux

11.2.5 High availability and recovery integration

IBM Tivoli Workload Scheduler for z/OS end-to-end, IBM Tivoli Workload
Scheduler, and Tivoli Dynamic Workload Broker are all well suited for
environments that require high availability and short recovery times.

TDWB
Server

TWS for z/OS end-to-end
MASTERDM

Domain
Manager

DMA

Windows 2003

FTA1 FTA2

TWS Agent

AIX

TWS DomainA

AIX

TDWB
Agent

TDWB
Agent

TDWB
Agent

AIX

zLinux

Master
Domain
Manager

OPCMASTER

zLinux

Tivoli Dynamic Workload Broker

Windows 2003

z/OS

 Chapter 11. Managing Tivoli Dynamic Workload Broker jobs using Tivoli Workload Scheduler for z/OS

The integration architecture is used to identify which components need high
availability implementation:

� Implementing high availability for the Tivoli Workload Scheduler for z/OS
engine (Both controller and server components must be considered.)

� Implementing high availability for the Tivoli Workload Scheduler domain
manager hosting the Tivoli Workload Scheduler agent

This is necessary if the Tivoli Workload Scheduler agent is connected to an
interpositioned domain manager instead of directly to the master domain
manager.

� Implementing high availability for the Tivoli Dynamic Workload Broker server
and Tivoli Workload Scheduler agent

Tivoli Workload Scheduler for z/OS engine high availability
The Tivoli Workload Scheduler for z/OS standby engine feature exploits the z/OS
sysplex to deliver automatic, semi-automatic, or manual takeover from the active
engine to the standby engine should an outage impact the active engine. One or
more standby engines can be running at the same time, typically on different
z/OS images in sysplex.

The Tivoli Workload Scheduler for z/OS end-to-end server allows you to exploit
the Dynamic Virtual IP Address (DVIPA), allowing seamless connection switching
to occur when a standby engine takes over the active engine role.

Tivoli Workload Scheduler domain manager high availability
Tivoli Workload Scheduler domain manager high availability is necessary if the
Tivoli Workload Scheduler agent is connected to an interpositioned domain
manager instead of directly to the master domain manager.

Tivoli Workload Scheduler domain manager high availability can be achieved
using several options:

� IBM HACMP™

IBM HACMP software is the IBM tool for building UNIX-based, mission-critical
computing platforms. HACMP has two major components, high availability
(HA) and cluster multi-processing (CMP).

� Microsoft® Cluster Service

Microsoft Cluster Service (MSCS) is software that supports the connection of
two servers into a cluster for higher availability and easier manageability of
data and applications.

536 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Tivoli Dynamic Workload Broker server high availability
Tivoli Dynamic Workload Broker server high availability is described in detail in
Chapter 6, “High availability and recovery considerations” on page 247.

Tivoli System Automation for Multiplatforms
Tivoli System Automation is a high-availability product that strives to provide the
continuous operation of a system over time. It uses a policy-based automation
approach to make the definition of resources, and relationships of resources to
each other, as easy as possible.

The Tivoli System Automation for Multiplatforms end-to-end component allows
you to monitor and manage multiple clusters and relationships between them.
For instance, there can be one cluster for the Tivoli Dynamic Workload Broker
server, another for the Tivoli Workload Scheduler domain manager, and then a
sysplex where the Tivoli Workload Scheduler z/OS end-to-end engine is running.
Inter-cluster relations can be managed and enforced from the Tivoli System
Automation end-to-end component.

 Chapter 11. Managing Tivoli Dynamic Workload Broker jobs using Tivoli Workload Scheduler for z/OS

Sample High Availability scenario
Figure 11-9 shows an integration example that meets requirements on high
availability and short recovery times:

� The Tivoli Dynamic Workload Broker server is running on an AIX HACMP
cluster.

� The Tivoli Workload Scheduler for z/OS engine is running in a z/OS sysplex.
The standby engine feature is exploited, allowing automatic, semi-automatic,
or manual take over from the active engine to the standby engine should an
outage impact the active engine.

� The Tivoli Workload Scheduler for z/OS end-to-end server uses a Dynamic
Virtual IP Address (DVIPA), allowing seamless connection switching to occur
when the active engine moves to another z/OS image in the sysplex.

Figure 11-9 Tivoli Dynamic Workload Broker and Tivoli Workload Scheduler for z/OS
end-to-end high availability integration

TWS for z/OS end-to-end
MASTERDM

Master
Domain
Manager

OPCMASTER

z/OS
sysplex

Domain
Manager

DMA

AIX AIX Windows 2003

TWS DomainA Tivoli Dynamic Workload Broker

FTA1 FTA2 TDWB
Agent

TDWB
Agent

Linux

TDWB
Agent

AIX

TDWB
Server

AIX

AIX HACMP

TWS Agent

TDWB
Agent

Windows 2003

Active
Engine

Standby
Engine

Standby
Engine

538 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Summary
In summary, several needs and requirements should be considered when
selecting the architecture:

� The Tivoli Workload Scheduler for z/OS end-to-end domain topology.

Tivoli Workload Scheduler for z/OS end-to-end does not limit the number of
domains or levels (the hierarchy) in the network. There can be as many levels
of domains as is appropriate for a given computing environment.

The number of domains or levels should take into consideration the topology
of the physical network where Tivoli Workload Scheduler for z/OS end-to-end
and Tivoli Dynamic Workload Broker are installed. Most often, geographical
boundaries are used to determine divisions between domains.

� Tivoli Workload Scheduler fault-tolerant agents and Tivoli Dynamic Workload
Broker agents can coexist on the same distributed server. The Tivoli
Workload Scheduler fault-tolerant agent is suitable for running housekeeping
jobs on each individual server (for example, backups and log archiving).

� High availability and recovery requirements for the Tivoli Dynamic Workload
Broker server (remember that the Tivoli Dynamic Workload Broker server and
Tivoli Workload Scheduler agent run on the same physical machine).

Tivoli Dynamic Workload Broker server availability and recovery requirements
should be extended to include the Tivoli Workload Scheduler domain
manager to which the Tivoli Workload Scheduler agent is connected. The
reason for this is that the Tivoli Workload Scheduler agent can only launch
jobs under the direction of its domain manager.

11.3 Installation and configuration considerations

Installation and configuration can be divided into two major parts. First,
installation and configuration of the two products, and then performing the
specific steps to integrate them.

 Chapter 11. Managing Tivoli Dynamic Workload Broker jobs using Tivoli Workload Scheduler for z/OS

11.3.1 Product installation and configuration

Before you can enable management of Tivoli Dynamic Workload Broker jobs
using Tivoli Workload Scheduler for z/OS end-to-end you need to complete the
following tasks:

� Install and configure IBM Tivoli Workload Scheduler for z/OS.

� Activate the end-to-end feature in the Tivoli Workload Scheduler for z/OS.

� Install and configure IBM Tivoli Dynamic Workload Broker server, agent
manager, agents, and user interfaces.

Product installation tasks are documented in:

� IBM Tivoli Workload Scheduler for z/OS Installation Guide, SC32-1264

� IBM Tivoli Workload Scheduler for z/OS Customization and Tuning,
SC32-1265

� IBM Tivoli Dynamic Workload Broker Installation and Configuration

Tivoli Dynamic Workload Broker installation is also the topic of Chapter 3,
“Tivoli Dynamic Workload Broker installation” on page 81.

11.3.2 Overview of specific installation and customization steps

The specific steps that you need to perform are:

1. Plan your configuration.

2. Configure network connectivity.

3. Install and configure the Tivoli Workload Scheduler agent.

4. Create the Tivoli Workload Scheduler for z/OS end-to-end workstation to be
used to connect the Tivoli Workload Scheduler agent.

Note: In this section we only focus on installation and customization activities
and considerations that are specific when enabling management of Tivoli
Dynamic Workload Broker jobs using Tivoli Workload Scheduler for z/OS
end-to-end.

We assume that Tivoli Workload Scheduler for z/OS product installation tasks
and Tivoli Workload Scheduler for z/OS end-to-end feature activation have
been completed.

We also assume that the Tivoli Dynamic Workload Broker server, agent
manager, agents, and user interfaces have been installed.

540 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

5. Activate the Tivoli Workload Scheduler for the z/OS end-to-end workstation.

6. Verify the integration.

11.3.3 Plan your configuration

Planning you configuration involves:

1. Select the Tivoli Workload Scheduler for the z/OS end-to-end domain
topology to use for the Tivoli Workload Scheduler agent. This includes
identifying the domain manager that will host the Tivoli Workload Scheduler
agent.

2. Choose a Tivoli Workload Scheduler for the z/OS end-to-end workstation
name.

3. Identify the TCP/IP port to be used by the Tivoli Workload Scheduler agent.

4. Identify the TCP/IP DNS name and the IP address of the Tivoli Dynamic
Workload Broker server.

5. Identify the TCP/IP DNS name and the IP address of the Tivoli Workload
Scheduler for the z/OS server. If your Tivoli Workload Scheduler for the z/OS
server is enabled to run on multiple z/OS systems, you need to identify DNS
names and IP addresses of all z/OS systems involved.

If you use Dynamic Virtual IP Addressing (DVIPA) for the Tivoli Workload
Scheduler for z/OS server you also need to identify its DVIPA IP address.

 Chapter 11. Managing Tivoli Dynamic Workload Broker jobs using Tivoli Workload Scheduler for z/OS

Figure 11-10 shows how the Tivoli Workload Scheduler agent definition is related
to Tivoli Workload Scheduler for z/OS end-to-end standard agent and Tivoli
Workload Scheduler for z/OS workstation definitions.

Figure 11-10 Configuring parameters for the Tivoli Workload Scheduler agent

11.3.4 Configure network connectivity

The network must be configured to allow TCP/IP communication between the
Tivoli Dynamic Workload Broker and the Tivoli Workload Scheduler for z/OS
end-to-end.

Important: The configuration shown in Figure 11-6 on page 533 and
Figure 11-10 on page 542 is used as a working example for the installation
and customization tasks described. You must change the workstation name,
IP port, and so on to match your own configuration.

IBM Tivoli Dynamic Workload Broker © 2007 IBM Corporation

PARMLIB

TDWB TWS Agent – TWS configuration
TWS.Agent.Name=TDWB
TWS.Agent.Port=32111
TWS.MasterDomainManager.Name=OPCMASTER
TDWB TWS Agent – TDWB server configuration
TDWB.User=tdwb
TDWB.Password={aes}N8dS9Md6bbLEJ . . .g=
TDWB.HostName=athens
TDWB.WAS_Port=9550
TDWB.WAS_Secure_Port=9551
TDWB.SSL_Enabled=false
TDWB TWS Agent - TDWB host Configuration
TWSAgent.HostName=athens
TWSAgent.WAS_Port=9550

Tivoli Dynamic Workload Broker

Tivoli Workload Scheduler for z/OS end-to-end

WS

Work station name ===> TDWB
DESCRIPTION ===> TDWB work station
WORK STATION TYPE ===> C G General,…
REPORTING ATTR ===> A A Automatic,…
FT Work station ===> Y Y or N
. . .

CPUREC CPUNODE(1.2.3.4) CPUOS(WNT)
CPUNAME(TDWB) CPUTCPIP(32111)
CPUHOST(OPCMASTER)

CPUDOMAIN(MASTERDM) CPUTYPE(SAGENT)
CPUAUTOLNK(ON) CPULIMIT(30)
CPUTZ('America/Chicago') CPUUSER(twse2e)
SSLLEVEL(OFF) SSLPORT(0) FIREWALL(NO)

…\ITDWB\Server\config\TWSAgentConfig.properties

TDWB
Server

TWS Agent

IP
Name: athens
Address: 1.2.3.4

542 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

On one end is Tivoli Workload Scheduler agent (which emulates a Tivoli Work
Scheduler standard agent).

On the other end is the Tivoli Workload Scheduler for the z/OS end-to-end
domain manager that hosts the Tivoli Workload Scheduler agent.

An example of the configuration definitions involved are shown in Example 11-1.

Example 11-1 Sample Tivoli Dynamic Workload Broker and TWS for z/OS TCP/IP related parameters

TWS for z/OS end-to-end USS server topology definition:
TOPOLOGY HOSTNAME(twsce2e) /* TWSE2E USSserver hostname */
 PORTNUMBER(32111) /* TWSE2E netman listen port */
 TCPIPJOBNAME(TCPIP) /* z/OS TCP/IP started task */

TWS for z/OS end-to-end topology definition of TDWB TWS Agent workstation:
CPUREC CPUNAME(TDWB) /* TWS end-to-end CPU name */
 CPUNODE(1.2.3.4) /* IP address or DNS name */
 CPUTCPIP(32111) /* NETMAN TCP/IP port */
 CPUHOST(OPCMASTER) /* SAGENTs domain manager */
 CPUTYPE(SAGENT) /* Agent type */
 CPUDOMAIN(MASTERDM) /* Domain name for WKST */
 ...
===
Tivoli Workload Scheduler agent TWSAgentConfig.properties file:
TWS.Agent.Name=TDWB
TWS.Agent.Port=32111
TWS.MasterDomainManager.Name=OPCMASTER

In Example 11-1 the Tivoli Workload Scheduler agent is directly connected to the
master domain manager OPCMASTER.

Connectivity requirements
You must configure your TCP/IP network routing tables and fire walls to allow for
the following connections to be established:

� The Tivoli Workload Scheduler agent is listening on the port specified in
TWSAgentConfig. It listens for incoming requests from its hosting domain
manager.

� The hosting domain manger is listening for incoming requests on a port
specified in the TOPOLOGY PORTNUMBER parameter.

� The Tivoli Workload Scheduler agent will open connections:

– From a random port on its own machine

 Chapter 11. Managing Tivoli Dynamic Workload Broker jobs using Tivoli Workload Scheduler for z/OS

– To the domain manager listening port

� The domain manager will open connections

– From a random port on its own machine
– To the Tivoli Workload Scheduler agent listening port

Figure 11-11 shows the TCP/IP netstat command output from our lab
environment (slightly edited to enhance readability).

Figure 11-11 TCP/IP netstat output

11.3.5 Installing and configuring the Tivoli Workload Scheduler agent

The Tivoli Workload Scheduler agent emulates the behavior of a Tivoli Workload
Scheduler standard agent and is installed as an extension to the Tivoli Dynamic
Workload Broker server.

Choosing the installation method
You install the Tivoli Dynamic Workload Broker server, including the Tivoli
Workload Scheduler agent, by performing a custom installation using either the
installation wizard or the silent installation method.

netstat output on z/OS:
TWSCE2E twsce2e:32111 0.0.0.0:0 Listening
TWSCE2E twsce2e:32111 1.2.3.4:2893 Established
TWSCE2E twsce2e:2584 1.2.3.4:32111 Established

netstat output on Windows server running TDWB server:
java.exe TCP 1.2.3.4:32111 twsce2e:2584 ESTABLISHED
java.exe TCP 1.2.3.4:2893 twsce2e:32111 ESTABLISHED
java.exe TCP 1.2.3.4:32111 0.0.0.0:0 LISTENING

Important: You must configure the TCP/IP network connectivity using the
DNS names, IP addresses, and IP ports for your own configuration.

544 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

When performing a custom installation using the installation wizard method, the
features window is displayed (Figure 11-12).

Figure 11-12 Installation wizard features window - TWS Agent selected

Tivoli Workload Scheduler agent configuration
To configure the Tivoli Workload Scheduler agent for integration with Tivoli
Workload Scheduler for z/OS end-to-end you need to supply the following
information during installation:

� TWS workstation name

Specify the name of the Tivoli Workload Scheduler for z/OS workstation that
represents the Tivoli Workload Scheduler agent.

Important: The Tivoli Workload Scheduler agent will not be installed if you
perform a typical installation of the Tivoli Dynamic Workload Broker server.

You can only install one Tivoli Workload Scheduler agent.

 Chapter 11. Managing Tivoli Dynamic Workload Broker jobs using Tivoli Workload Scheduler for z/OS

� Tivoli Workload Scheduler Domain Manager name

If the Tivoli Workload Scheduler agent is directly connected to the Tivoli
Workload Scheduler for the z/OS end-to-end server, this name must be set to
OPCMASTER.

Otherwise, you specify the workstation name of the Tivoli Workload
Scheduler for the z/OS end-to-end domain manager that is hosting the Tivoli
Workload Scheduler agent.

� TWS Agent Port

Specify the TCP/IP port number to be used by the Tivoli Workload Scheduler
agent. It consists of five numerals and, if omitted, uses the default value,
31111. The Tivoli Workload Scheduler agent uses this port to listen for
incoming requests from its domain manager.

� ITDWB user name

The user account name is used by the Tivoli Workload Scheduler agent when
authenticating itself to the Tivoli Dynamic Workload Broker server.

� ITDWB user password

The user account password.

TWSAgentConfig.properties file
The Tivoli Workload Scheduler agent configuration information is stored in the
TWSAgentConfig.properties file, which is located in the Tivoli Dynamic Workload
Broker installation subdirectory config (<installation directory>\config).

Note on Tivoli Workload Scheduler for z/OS workstation names:

A Tivoli Workload Scheduler for z/OS end-to-end workstation name can have
a maximum of four characters, must start with a letter, and all letters must be
uppercase. There is one exception — the master domain manager has the
fixed name OPCMASTER.

Note on ITDWB user name and password:

If WebSphere security is enabled on the Tivoli Dynamic Workload Broker
server, the Tivoli Workload Scheduler agent must authenticate (to the server)
while submitting and managing job requests coming from the Tivoli Workload
Scheduler for the z/OS end-to-end environment.

546 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Example 11-2 shows a sample TWSAgentConfig.properties file.

Example 11-2 Sample TWSAgentConfig.properties file

TWS Standard Agent Configuration

TWS.Agent.Name=TDWB
TWS.Agent.Port=32111
TWS.MasterDomainManager.Name=OPCMASTER
#--------------------------
TDWB Server Configuration
#--------------------------
TDWB.User=tdwb
TDWB.Password={aes}N8dS9Md6bbLEJntpEi3Z1GsJC4E8UD+BihdSYuSjffg=
TDWB.HostName=athens
TDWB.WAS_Port=9550
TDWB.WAS_Secure_Port=9551
TDWB.SSL_Enabled=false
#-----------------------------
TWS Agent Host Configuration
#-----------------------------
TWSAgent.HostName=athens
TWSAgent.WAS_Port=9550

Making changes to the configuration
If you need to modify the Tivoli Workload Scheduler agent configuration, update
the TWSAgentConfig.properties file. To activate the changes you must restart the
Tivoli Dynamic Workload Broker server.

Verifying installation of the Tivoli Workload Scheduler agent
After you have completed installation and restarted the Tivoli Dynamic Workload
Broker server, the Tivoli Workload Scheduler agent starts. The Tivoli Workload
Scheduler agents starts automatically during server startup. Example 11-3
shows sample messages confirming that the Tivoli Workload Scheduler agent
has started.

Example 11-3 Tivoli Workload Scheduler agent startup messages in TDWB server SystemOut.log

[3/28/07 3:21:22:547 PST] 0000000a TWSAgent I
AWKTSA005I The TWS Agent has been successfully configured.
[3/28/07 3:21:22:594 PST] 0000000a TWSAgent I
AWKTSA001I The TWS Agent has been successfully started.
[3/28/07 3:21:22:594 PST] 00000034 TWSAgent I
AWKTSA007I Netman has been successfully started and it is listening on port 32111.

 Chapter 11. Managing Tivoli Dynamic Workload Broker jobs using Tivoli Workload Scheduler for z/OS

11.3.6 Create Tivoli Workload Scheduler for z/OS end-to-end

Creating a Tivoli Workload Scheduler for z/OS end-to-end workstation consists of
two steps:

1. Create a Tivoli Workload Scheduler for z/OS workstation.
2. Create the topology definition for the workstation.

Create a Tivoli Workload Scheduler for z/OS workstation
Create a Tivoli Workload Scheduler for z/OS workstation using the Tivoli
Workload Scheduler for z/OS ISPF panels. Enter information like that shown in
Figure 11-13. Make sure that you define it as a computer type workstation with
reporting attribute automatic and FT workstation flag set to yes.

Figure 11-13 Sample Tivoli Workload Scheduler for z/OS V8.3 workstation definition

workstation name : TDWB
DESCRIPTION ===> TDWB ITSO Austin on Windows 2003
workstation TYPE ===> C G General, C Computer, P Printer
REPORTING ATTR ===> A A Automatic, S Manual start and completion
 C Completion only, N Non reporting
FT workstation ===> Y FT workstation, Y or N
PRINTOUT ROUTING ===> SYSPRINT The ddname of daily plan printout data set
SERVER USAGE ===> N Parallel server usage C , P , B or N
DESTINATION ===> ________ Name of destination
Options: allowed Y or N
 SPLITTABLE ===> N JOB SETUP ===> N
 STARTED TASK, STC ===> N WTO ===> N
 AUTOMATION ===> N WAIT ===> N
Defaults:
 TRANSPORT TIME ===> 00.00 Time from previous workstation HH.MM
 DURATION ===> ________ Duration for a normal operation HH.MM.SS
Last updated by : CCBJW on 07/03/13 at 19.37

548 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Create the topology definition for the workstation
Create the topology definition by editing the topology definition member used by
the Tivoli Workload Scheduler for z/OS end-to-end. Add a CPUREC definition
like in Example 11-4.

Example 11-4 Tivoli Workload Scheduler for z/OS V8.3 end-to-end workstation topology definition

CPUREC CPUNAME(TDWB) /* TWS end-to-end CPU name */
 CPUOS(WNT) /* Operating system */
 CPUNODE(1.2.3.4) /* IP address or DNS name */
 CPUTCPIP(32111) /* NETMAN TCP/IP port */
 CPUDOMAIN(MASTERDM) /* Domain name for WKST */
 CPUTYPE(SAGENT) /* Agent type */
 CPUHOST(OPCMASTER) /* SAGENT domain manager */
 CPUAUTOLNK(ON) /* Automatic link ON/OFF */
 CPULIMIT(30) /* Max. # parallel jobs */
 CPUTZ('America/Chicago') /* Agent time zone */

SSLLEVEL(OFF) /* SSL auth. between SA-DM? */
 SSLPORT(0) /* SSL auth is not required */
 FIREWALL(NO) /* FW between SA and DM? */

Important: CPUNAME(), CPUTCPIP() and CPUHOST() parameters must
match the configuration of the Tivoli Workload Scheduler agent. See
Example 11-2 on page 547.

Tip: The CPULIMIT() parameter specifies the number of jobs (0 to 1024) that
can run at the same time in the workstation. If you specify 0, no jobs are
launched on the workstation. For fault-tolerant and standard agents having a
direct connection to the end-to-end server, changes in this value come into
effect during the extension or replanning of the current plan, not during the
renewal of the symphony file.

Restriction: Tivoli Dynamic Workload Broker V1.1 does not support SSL
authentication between the domain manager and the Tivoli Workload
Scheduler agent. Specify SSLLEVEL(OFF).

Note: The CPUOS() parameter is not used by the Tivoli Dynamic Workload
Broker V1.1 Tivoli Workload Scheduler agent. It can be set to either
CPUOS(WNT) or CPUOS(AIX).

 Chapter 11. Managing Tivoli Dynamic Workload Broker jobs using Tivoli Workload Scheduler for z/OS

11.3.7 Activate the Tivoli Workload Scheduler for z/OS end-to-end
workstation

To activate the new Tivoli Workload Scheduler for z/OS end-to-end workstation
you must update the current plan using either the current plan extend or the
current plan replan batch job.

The current plan extend/replan job will as part of its processing:

� Add the new workstation to the current plan.

� Add the new standard agent workstation to the symphony file. Topology
information for the workstation will also be added to the symphony file.

When the symphony file is ready, the Tivoli Workload Scheduler for z/OS engine
will send it to the distributed network of domain managers and fault-tolerant
agents and end-to-end scheduling will continue.

Verify activation
You can verify that the activation was successful by checking that the workstation
is available in the current plan and that its status is linked and active. If you
specified CPUAUTOLNK(OFF) you must first submit a link command manually.

You can also verify activation by checking messages in the Tivoli Workload
Scheduler for z/OS logs and the Tivoli Dynamic Workload Broker server log.

Example 11-5 shows messages from the Tivoli Workload Scheduler for z/OS
Controller log.

Example 11-5 TWS for z/OS Controller workstation activation messages

EQQWL10W workstation TDWB HAS BEEN SET TO LINKED STATUS TYPE SAGENT DOMAIN MASTERDM
EQQWL10W workstation TDWB HAS BEEN SET TO ACTIVE STATUS TYPE SAGENT DOMAIN MASTERDM

Tip: Consider specifying CPUAUTOLNK(ON) in the topology definition so that
when the domain manager that hosts the Tivoli Workload Scheduler agent
starts, it automatically links the workstation. If you specify
CPUAUTOLNK(OFF) you must submit a link command manually from the
Modify Current Plan dialog or Job Scheduliing Console.

550 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Example 11-6 shows messages from Tivoli Workload Scheduler for z/OS
end-to-end server TWSMERGE log.

Example 11-6 TWS for z/OS end-to-end workstation activation messages

MAILMAN:AWSBCV087I Added TDWB to workstation table, node "R", server " ", link type
"1", flags "273".
BATCHMAN:AWSBHT030I Adding workstation TDWB to be scheduled by host workstation
OPCMASTER.
BATCHMAN:AWSBDY103I Received command MY:UNLINK for run number 11 for workstation TDWB
from workstation OPCMASTER.
BATCHMAN:AWSBHT034I Host workstation OPCMASTER sent an INIT record to workstation
TDWB.
MAILMAN:AWSBCV029I Attempting to link to TDWB.
MAILMAN:AWSBCV061I Starting to initialize TDWB
TDWB:WRITER:AWSBCW028I Started by MAILMAN/8.3 from TDWB; workstation type: WNT
TDWB:WRITER:AWSBCW031I Handshake command_type StartMailbox
MAILMAN:AWSBCV055I Finished initializing TDWB
MAILMAN:AWSBCT041I Service 2002 started on TDWB
MAILMAN:AWSBCV104I Has linked to TDWB using TCP.
BATCHMAN:AWSBDY104I Received command MY:LINK for run number 12 for workstation TDWB
from workstation OPCMASTER.
BATCHMAN:Workstation TDWB State is being changed: LINKED=TCP
BATCHMAN:AWSBDY112I Received command MY:WRITER-UP for run number -1 for workstation
TDWB from workstation OPCMASTER.
BATCHMAN:Workstation TDWB State is being changed: WRITER
BATCHMAN:AWSBDY110I Received command MY:JOBMAN-UP for run number 12 from workstation
TDWB.
BATCHMAN:Workstation TDWB State is being changed: JOBMAN
BATCHMAN:AWSBDY105I Received command MY:UNSET INIT for run number 12 from workstation
TDWB.
BATCHMAN:Workstation TDWB State is being changed: UNSETTING: INITTED
BATCHMAN:AWSBHT035I Workstation TDWB completed its INIT process. 0 jobs running.
BATCHMAN:AWSBDY106I Received command MY:INIT for run number 12 from workstation TDWB.
BATCHMAN:Workstation TDWB State is being changed: INITTED
BATCHMAN:AWSBHT033I Workstation TDWB is now active, scheduling is resuming.
BATCHMAN:AWSBHT035I Workstation TDWB completed its INIT process. 1 jobs running.
BATCHMAN:AWSBDY105I Received command MY:UNSET INIT for run number 12 from workstation
TDWB.
BATCHMAN:AWSBDY106I Received command MY:INIT for run number 12 from workstation TDWB.

 Chapter 11. Managing Tivoli Dynamic Workload Broker jobs using Tivoli Workload Scheduler for z/OS

Example 11-7 show messages from the Tivoli Dynamic Workload Broker server
SystemOut.log file.

Example 11-7 Tivoli Workload Scheduler agent activation messages in TDWB server SystemOut.log

[3/28/07 4:13:55:469 PST] 00000034 TWS Agent...
...AWKTSA014I The STOP MAILMAN service request has been received by Netman.
...AWKTSA010I The START WRITER service request has been received by Netman.
...AWKTSA017I Writer has been successfully started and it is listening for messages.
...AWKTSA032I The TWS Agent CPU has been successfully linked to
[Ljava.lang.Object;@466a6273 using port {1}.
...AWKTSA026I Jobman has been successfully started.
...AWKTSA021I Mailman has been successfully started and the uplink connection is
established.
...AWKTSA012I The START MAILMAN service request has been received by Netman.
...AWKTSA013W The MAILMAN service is already started.
...AWKTSA034I The TWS Agent CPU has been successfully initialized.

11.3.8 Verify integration

The final verification of the Tivoli Dynamic Workload Broker and Tivoli Workload
Scheduler for z/OS end-to-end integration is to schedule a job end-to-end. To do
this you must:

� Create a Tivoli Workload Scheduler for z/OS end-to-end job stream.

� Create a Tivoli Workload Scheduler for z/OS end-to-end job SCRPTLIB
member.

� Create a Tivoli Dynamic Workload Broker Job definition.

11.4 Planning and choreography

Planning and choreography in an integrated Tivoli Dynamic Workload Broker and
Tivoli Workload Scheduler for z/OS end-to-end environment means that you map
business applications and tasks to what in Tivoli Workload Scheduler for z/OS
end-to-end terminology are units of work called jobs. Jobs are grouped into job
streams along with times, priorities, and other dependencies that determine the
exact order of the jobs. Job streams also contain business-run schedules (daily,
weekly, cyclic every hour, and so on).

552 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

In this section we focus on activities and considerations in the following planning
and choreography areas:

� Integration benefits

� Allocation of jobs to computer resources

� Job definition user interfaces

� Defining job and job stream definitions

– Job and job stream definitions in Tivoli Workload Scheduler for z/OS
end-to-end

– Job definitions in Tivoli Dynamic Workload Broker

– Interrelation of job definitions

� Moving existing jobs between the environments

11.4.1 Integration benefits

Integrating the Tivoli Dynamic Workload Broker and Tivoli Workload Scheduler
for z/OS end-to-end delivers planning and choreography benefits both ways.

The Tivoli Dynamic Workload Broker provides a series of improvements on your
existing IBM Tivoli Workload Scheduler for the z/OS end-to-end solution:

� Virtualization of the scheduling infrastructure by providing an abstraction layer
on the resource selection

� Workload balancing by routing jobs among a group of resources according to
the availability and activity levels of those resources

� SOA job brokering services

� Scheduling of IBM WebSphere Java 2 Enterprise Edition (J2EE) applications

� Automatic routing of jobs to the most appropriate resources based on job
requirements

� Enhanced flexibility in workload distribution and running

� Automatic routing of jobs for which submission failed to appropriate resources

Note: In Tivoli Workload Scheduler for z/OS end-to-end the terms job stream
and application description (AD) are synonyms. In this section we have
chosen only to use the term job stream.

 Chapter 11. Managing Tivoli Dynamic Workload Broker jobs using Tivoli Workload Scheduler for z/OS

Tivoli Workload Scheduler for z/OS end-to-end provides the following key
features to the Tivoli Dynamic Workload Broker:

� End-to-end scheduling infrastructure
� Advanced scheduling, calendaring, planning, and choreographing capabilities
� Job restart and recovery capabilities

11.4.2 Allocation of jobs to computer resources

Allocation of jobs to computer resources can be done in either of two ways:

� Using Tivoli Workload Scheduler fault tolerant agents

A job can be statically allocated to a dedicated computer resource. This is
done using a Tivoli Workload Scheduler for z/OS end-to-end job definition that
specifies that the job will run on a traditional Tivoli Workload Scheduler fault
tolerant workstation.

� Using Tivoli Dynamic Workload Broker

A job can be dynamically allocated to computer resources. This is done using
two complementary job definitions:

– A Tivoli Workload Scheduler for z/OS end-to-end job definition that
specifies that the job will run on the workstation representing Tivoli
Dynamic Workload Broker.

– A Tivoli Dynamic Workload Broker job definition. This job definition defines
how the job should be allocated to physical or virtual resources according
to the job importance, requirements, and scheduling policies.

Which type of allocation to choose is often driven by business needs and
requirements in areas such as job SLA and computer resource optimization.

The following job types might be potential candidates for Tivoli Dynamic
Workload Broker jobs:

� Heavy computational tasks

� Jobs that require resource optimization and resource balancing

� Jobs strongly dependent on the availability of hardware resources, such as
CPU and RAM

� Jobs that must run in high-availability clusters

� Jobs that can benefit from automated recovery of failures

� Jobs requiring IBM WebSphere job scheduling

554 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

11.4.3 Job definition user interfaces

In an integrated environment you need two complementary job definitions for
every job that is going to be submitted by Tivoli Workload Scheduler for z/OS
end-to-end to Tivoli Dynamic Workload Broker.

You interact with Tivoli Workload Scheduler for z/OS end-to-end user interfaces
(see also “User interfaces” on page 521) to define the Tivoli Workload Scheduler
for z/OS end-to-end job stream and job definition parts:

Job stream The job stream is used to define job details, job
dependencies, and job stream run cycle information

SCRPTLIB job member The SCRPTLIB job member is used to define the
name of the Tivoli Dynamic Workload Broker job to
be run. The member acts as the link between the job
definition in the job stream and the Tivoli Dynamic
Workload Broker job definition (located in the Tivoli
Dynamic Workload Broker job repository).

Job stream definitions are maintained using Job Scheduling Console or Tivoli
Workload Scheduler for z/OS ISPF panels.

SCRPTLIB job members are maintained using z/OS ISPF panels.

You interact with Dynamic Workload Broker user interfaces to define the Dynamic
Workload Broker job definition part. You use the Tivoli Dynamic Workload Broker
Web Console or the Job Brokering Definition Console. Refer to Chapter 4,
“Working with Tivoli Dynamic Workload Broker” on page 141, for more details on
how to use these interfaces.

The complementary job definitions are stored in different physical places and
access to them is protected by different mechanisms. Each person with a need to
maintain the definitions needs one or more of the following types of user
credentials:

� Tivoli Workload Scheduler for z/OS end-to-end access

– A z/OS TSO user ID is required to use the Job Scheduling Console, Tivoli
Workload Scheduler for z/OS ISPF panels, and z/OS ISPF.

Authorization to Tivoli Workload Scheduler for z/OS data and to the
SCRPTLIB job member is verified using this user ID.

– A user name is required to use the Job Scheduling Console. (This user
name is mapped to a z/OS TSO user ID when connecting to the Tivoli
Workload Scheduler for z/OS engine.)

 Chapter 11. Managing Tivoli Dynamic Workload Broker jobs using Tivoli Workload Scheduler for z/OS

� Tivoli Dynamic Workload Broker access

– A user ID is required to use the Tivoli Dynamic Workload Broker Web
Console.

An additional user name is most likely required for the Web Console
server connection. This user name is used for authentication to the Tivoli
Dynamic Workload Broker server. Authorization to Tivoli Dynamic
Workload Broker data is verified using this user name.

– A user name is required in the Job Brokering Definition Console (JBDC).
The user name is needed in a server connection used by JBDC when
uploading and downloading job definitions to and from the Tivoli Dynamic
Workload Broker server.

Refer to Chapter 11, “Managing Tivoli Dynamic Workload Broker jobs using Tivoli
Workload Scheduler for z/OS end-to-end” on page 515, for more information
about authentication mechanisms in the Tivoli Dynamic Workload Broker.

556 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

11.4.4 Defining job and job stream definitions

Figure 11-14 shows how a Tivoli Workload Scheduler for z/OS end-to-end job
stream and job definition are related to the Tivoli Dynamic Workload Broker job
definition.

Figure 11-14 Interrelation of TWS for z/OS end-to-end job stream and TDWB job definition
IBM Ti li D i W kl d B k © 2007 IBM Corporation

JSDL

<?xml version="1.0" encoding="UTF-8"?>
<jsdl:jobDefinition xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl"
xmlns:jsdle="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdle" description="Sample
TDWB job doing a smple echo command." name="twsz-WBECHO-job">

<jsdl:annotation>This job can run on both Windows and AIX.</jsdl:annotation>
<jsdl:application name="executable">

<jsdle:executable>
<jsdle:script>echo "twsz_WBECHO_job is running"</jsdle:script>

</jsdle:executable>
</jsdl:application>

</jsdl:jobDefinition>

Tivoli Dynamic Workload Broker

Tivoli Workload Scheduler for z/OS end-to-end

AD

Application WBECHO1

Oper Duration Job name Operation text
ws no. HH.MM.SS

TDWB 005 00.00.30 WBECHO Sample echo job

SCRPTLIB

SCRPTLIB
member=WBECHO /* SAMPLE TDWB ECHO JOB */

JOBREC
JOBCMD('twsz-WBECHO-job')

Job
Repository

 Chapter 11. Managing Tivoli Dynamic Workload Broker jobs using Tivoli Workload Scheduler for z/OS

You define that a job is to be submitted to the Tivoli Dynamic Workload Broker by
assigning it to the workstation that is representing the Tivoli Workload Scheduler
agent. Figure 11-15 shows how the job stream and job definition are related to
the workstation definition.

Figure 11-15 Interrelation of TWS for z/OS end-to-end job stream and workstation definition

Tivoli Workload Scheduler for z/OS end-to-end job stream and job definitions are
defined and maintained almost like any other distributed job. However, you need
to be aware of the following considerations when defining a Tivoli Dynamic
Workload Broker job:

� Non-centralized script versus centralized script type job

The Tivoli Dynamic Workload Broker V1.1 Tivoli Workload Scheduler agent
(which emulates a Tivoli Workload Scheduler standard agent) only supports
non-centralized script type jobs. It cannot handle centralized script type jobs.

IBM Global Technology Services

Tivoli Workload Scheduler for z/OS end-to-end

AD

Application WBECHO1

Oper Duration Job name Operation text
ws no. HH.MM.SS

TDWB 005 00.00.30 WBECHO Sample echo job

SCRPTLIB

SCRPTLIB
member=WBECHO /* SAMPLE TDWB ECHO JOB */

JOBREC
JOBCMD('twsz-WBECHO-job')

PARMLIBWS

Work station name ===> TDWB
DESCRIPTION ===> TDWB work station
WORK STATION TYPE ===> C G General,…
REPORTING ATTR ===> A A Automatic,…
FT Work station ===> Y Y or N
. . .

CPUREC CPUNODE(1.2.3.4) CPUOS(WNT)
CPUNAME(TDWB) CPUTCPIP(32111)
CPUHOST(OPCMASTER)

CPUDOMAIN(MASTERDM) CPUTYPE(SAGENT)
CPUAUTOLNK(ON) CPULIMIT(30)
CPUTZ('America/Chicago') CPUUSER(twse2e)
SSLLEVEL(OFF) SSLPORT(0) FIREWALL(NO)

558 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

� SCRPTLIB JOBREC JOBCMD() and JOBSCR()() parameters

The JOBCMD() or the JOBSCR() parameter must contain the name of the
Tivoli Dynamic Workload Broker job definition to be run. The name is case
sensitive. Make sure that your editor on z/OS does not translate to upper case
when editing SCRPTLIB members.

You can use either JOBCMD() or JOBSCR() to specify the name of the Tivoli
Dynamic Workload Broker job definition to be run. It makes no difference
which one you use.

� SCRPTLIB JOBREC JOBUSR() parameter

Tivoli Dynamic Workload Broker V1.1 does not support the JOBUSR()
parameter.

You can define user impersonation credentials in the TDWB job definition.
However, Tivoli Dynamic Workload Broker V1.1 only supports it for jobs
running on UNIX and Linux.

Tivoli Dynamic Workload Broker jobs running on Windows execute under the
same user account as the Tivoli Dynamic Workload Broker agent.

Tivoli Dynamic Workload Broker jobs running on UNIX and Linux execute
under the same user account as the Tivoli Dynamic Workload Broker agent
unless user impersonation credentials are defined in the TDWB job definition.

� SCRPTLIB JOBREC INTRACTV(YES) parameter

Tivoli Dynamic Workload Broker V1.1 does not support the INTRACTV(YES)
parameter.

� SCRPTLIB JOBREC RCONDSUC() parameter

Tivoli Dynamic Workload Broker V1.1 does not support the RCONDSUC()
parameter.

Tivoli Dynamic Workload Broker job definitions require no special considerations
before they can be used when building job streams and jobs in Tivoli Workload
Scheduler for z/OS end-to-end. Refer to Chapter 11, “Managing Tivoli Dynamic
Workload Broker jobs using Tivoli Workload Scheduler for z/OS end-to-end” on
page 515, for details on how to define and maintain the Tivoli Dynamic Workload
Broker job definitions.

Tip: The external jobname (that is, the operation extended name) in the Tivoli
Workload Scheduler for z/OS end-to-end job definition can be used to contain
the Tivoli Dynamic Workload Broker job name specified in the JOBREC
JOBCMD() parameter. By doing this you enable the possibility to search for
jobs in the current plan using the Tivoli Dynamic Workload Broker job name.

 Chapter 11. Managing Tivoli Dynamic Workload Broker jobs using Tivoli Workload Scheduler for z/OS

JOBREC JOBCMD() and JOBSCR() parameter considerations
Specifying the JOBCMD() or JOBSCR() parameter in SCRPTLIB members
requires some special considerations:

� The parameter must begin with the Tivoli Dynamic Workload Broker job
name. The name is followed by workload broker specific keywords as
appropriate. The generic format is:

JOBCMD(‘<jobName> [-var <varName>=<varValue>,...] [-affinity ...]’)

� Keep in mind that Tivoli Dynamic Workload Broker entity names are case
sensitive.

� If the parameter includes more than one word, it must be enclosed within
single or double quotation marks.

Example 11-8 shows examples of JOBCMD() usage.

Example 11-8 Specifying SCRPTLIB JOBREC JOBCMD() parameter

JOBCMD('twsz-WBECHO-job’)
JOBCMD('twsz-tdwbcli-cmd -var tdwbcmdparms=-alias "TDWB#&OADID*"')
JOBCMD('twsz-WBECHO-job -twsAffinity jobname=J005_WBAFJ1')

11.4.5 Moving existing jobs between the environments

You can move an existing Tivoli Dynamic Workload Broker job to be managed
and scheduled by the Tivoli Workload Scheduler for z/OS end-to-end. You can
also move an existing Tivoli Workload Scheduler for z/OS end-to-end job to be
submitted by the Tivoli Dynamic Workload Broker.

Moving an existing Tivoli Dynamic Workload Broker job
To move an existing Tivoli Dynamic Workload Broker job to be managed and
scheduled by the Tivoli Workload Scheduler for z/OS end-to-end you need to
perform the following steps:

1. Collect Tivoli Dynamic Workload Broker job information.

a. Identify the Tivoli Dynamic Workload Broker job brokering name. Keep in
mind that the name is case sensitive.

b. Identify any job definition variables that need to be supplied at run time.

c. Identify estimated job execution time.

d. Identify run schedules needed (ad hoc, daily, and so on). Also identify
whether the job must not be submitted before a specific time.

560 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

2. Plan and choreograph Tivoli Workload Scheduler for z/OS end-to-end.

a. Identify the Tivoli Workload Scheduler for z/OS end-to-end workstation to
be used for the Tivoli Dynamic Workload Broker job.

b. Select an existing job stream or create a new job stream.

i. Specify a suitable job stream name.

ii. Add or modify the job stream run cycle as appropriate.

iii. Add a new job to the selected job stream. Specify a suitable TWS job
name, duration time, and operation number, and also specify the
workstation. (Keep in mind that the TWS job name is not the same as
the Tivoli Dynamic Workload Broker job name.)

iv. Define the new job as a non-centralized type job.

v. Optionally, add a job description.

vi. Add internal and external job dependencies as appropriate.

vii. Add job time information to make job time dependent as appropriate.

viii.Save the job stream.

c. Create a SCRPTLIB member.

i. Create a SCRIPTLIB member with a name that equals the TWS job
name specified in the job stream.

ii. Add a JOBREC keyword.

iii. Add a JOBCMD('<jobName>') parameter. Keep in mind that Tivoli
Dynamic Workload Broker job brokering names are case sensitive.
Also add Tivoli Dynamic Workload Broker job definition variables and
values as appropriate.

iv. Save the SCRPTLIB member.

Moving an existing Tivoli Workload Scheduler for z/OS job
Here our task is to move an existing Tivoli Workload Scheduler for z/OS
end-to-end job to be submitted by Tivoli Dynamic Workload Broker. Let us begin
by looking at a before and after picture of the job submission process.

 Chapter 11. Managing Tivoli Dynamic Workload Broker jobs using Tivoli Workload Scheduler for z/OS

Figure 11-16 shows how job submission works for a non-centralized type job J1
in Tivoli Workload Scheduler for z/OS end-to-end. When job J1 is ready to run
the fault-tolerant agent (AIX1) retrieves the job script definition from the local
symphony file (1) and submits the job to computer AIX-1 (2).

Figure 11-16 Job submission by TWS for z/OS end-to-end fault tolerant agent

Note: There is also another case where the job is a centralized script type job.
When a centralized script type job is ready to run, the Tivoli Workload
Scheduler for z/OS end-to-end engine retrieves the corresponding script
member and sends it to the fault-tolerant agent (FTA). The FTA submits the job
to the operating system. This submission process is not shown in
Figure 11-16 on page 562.

TDWB Server

TWS for z/OS end-to-end
MASTERDM

z/OS

Domain
Manager

DMA

AIX-1

TWS DomainA Tivoli Dynamic Workload Broker

AIX-A

TDWB
Agent

TDWB
Agent

AIX-B

Master
Domain
Manager

OPCMASTER

J1 WKST=AIX1

Job stream

Symphony
file

TWS for z/OS
current plan

Symphony file

J1

1.

2.

TDWB Job Respository

TWS Agent
(SA TDWB)

FTA
AIX1

562 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Figure 11-17 shows how job submission works for a Tivoli Workload Scheduler
for z/OS end-to-end job J1N running on a Tivoli Dynamic Workload Broker
workstation TWDB.

Figure 11-17 Job submission by Tivoli Dynamic Workload Broker

In the job submission scenario in Figure 11-17, Tivoli Workload Scheduler for
z/OS end-to-end is only responsible for initiating a job start request. When job
J1N is ready to run:

1. Domain manager DMA retrieves the job definition from the its local symphony
file.

2. Domain manager DMA submits a job start request to the Tivoli Workload
Scheduler agent, which is running inside the Tivoli Dynamic Workload Broker.

3. The Tivoli Dynamic Workload Broker server retrieves the JSDL job definition
requested. It analyzes the job’s resource requirements and according to the
availability and activity levels of those resources it dynamically assigns a
resource to the job. In this case resource AIX-B is assigned.

4. The Tivoli Dynamic Workload Broker server sends a job execution request to
its agent on computer AIX-B where the agent submits the job to AIX.

TDWB Server

TWS for z/OS end-to-end
MASTERDM

z/OS

AIX-1

TWS DomainA Tivoli Dynamic Workload Broker

TWS Agent
(SA TDWB)

AIX-A

TDWB
Agent

TDWB
Agent

AIX-B

Master
Domain
Manager

OPCMASTER

Job stream

Symphony
file

TWS for z/OS
current plan

J1N WKST=TDWB

Symphony
file

TDWB Job RespositoryDomain
Manager

DMA

J1N

JSDL

1.

2.

3.

4.

FTA
AIX1

 Chapter 11. Managing Tivoli Dynamic Workload Broker jobs using Tivoli Workload Scheduler for z/OS

To move an existing Tivoli Workload Scheduler for z/OS end-to-end job to be
submitted by the Tivoli Dynamic Workload Broker you typically perform the
following steps:

1. Collect Tivoli Workload Scheduler for z/OS end-to-end job information.

a. Identify the command or script that is executed by the job. This information
is found either in the SCRTLIB member (if it is a non-centralized script type
job) or in a joblib member (if it is a centralized script type job).

b. Identify the job stream and job name. (Keep in mind that there might be
more than one.)

c. Identify the current job duration time.

d. Identify internal and external job dependencies.

2. Collect Tivoli Dynamic Workload Broker job information.

a. Identify the job resource requirements (CPU architecture, memory,
operating system, logical resources).

b. Identify computer resources (managed by Tivoli Dynamic Workload
Broker) that will be candidates for job resource allocation.

3. Create a Tivoli Dynamic Workload Broker job brokering definition.

Select a suitable Tivoli Dynamic Workload Broker job brokering name. Keep
in mind that the name is case sensitive.

Chapter 11, “Managing Tivoli Dynamic Workload Broker jobs using Tivoli
Workload Scheduler for z/OS end-to-end” on page 515, describes in detail
how to create job brokering definitions.

4. Create a new Tivoli Workload Scheduler for z/OS end-to-end job stream.

This can be a copy of the current job stream, but with a new job definition
running on the Tivoli Dynamic Workload Broker workstation. Keep in mind
that you must define the new job as a non-centralized script type job.

Create a new SCRPTLIB member.

a. Create a SCRIPTLIB member with a name that equals the TWS jobname
specified in the job stream.

b. Add a JOBREC keyword.

c. Add a JOBCMD('<job-brokering-name>') parameter. Keep in mind that
Tivoli Dynamic Workload Broker job brokering names are case sensitive.
Also add Tivoli Dynamic Workload Broker job definition variable overrides
as appropriate.

d. Save the SCRPTLIB member.

564 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

11.5 Planning and choreography advanced topics

In this section we focus on integration considerations for the following advanced
planning and choreography topics:

� Logical resource usage and scope
– Tivoli Dynamic Workload Broker logical resources
– Tivoli Dynamic Workload Broker group resources
– Tivoli Workload Scheduler for z/OS special resources
– Sample resource usage scenario

� Serializing access to resources
� Job affinity definition
� Job recovery and restart
� Job tailoring using variables

– Tivoli Workload Scheduler for z/OS variables in SCRPTLIB
– Tivoli Dynamic Workload Broker variables in JSDL
– Sample variables usage scenario

11.5.1 Logical resource usage and scope

Tivoli Dynamic Workload Broker and Tivoli Workload Scheduler for z/OS
end-to-end both allow you to choreograph job scheduling using the concept of
logical resources. We first briefly describe the resource concepts used in the two
products and then we describe a sample usage scenario.

Tivoli Dynamic Workload Broker resources
The Tivoli Dynamic Workload Broker has two resource concepts, Logical
Resources and Group Resources. We only give a brief description here. Refer to
Chapter 11, “Managing Tivoli Dynamic Workload Broker jobs using Tivoli
Workload Scheduler for z/OS end-to-end” on page 515, for a more in-depth
description of the concepts.

Restriction: The Job Brokering Definition Console has import/export
functionality that aids in migrating Tivoli Workload Scheduler jobs to the
Dynamic Workload Broker. However, this Job Brokering Definition Console
functionality cannot be used when migrating jobs from the Tivoli Workload
Scheduler for z/OS end-to-end.

Note: In Tivoli Workload Scheduler for z/OS end-to-end the terms job stream
and application description (AD) are synonyms. In this section we have
chosen only to use the term job stream.

 Chapter 11. Managing Tivoli Dynamic Workload Broker jobs using Tivoli Workload Scheduler for z/OS

Logical Resources
Tivoli Dynamic Workload Broker logical resources are typically use to represent
some computer characteristic that is not automatically discovered by the Tivoli
Dynamic Workload Broker agents, such as software licenses or installed
applications.

Logical resources are defined as being associated with one or more of the
computers known by the Tivoli Dynamic Workload Broker. For example, you
might create a logical resource named DB2 and add it to all the workstations
where DB2 is installed.

Tivoli Dynamic Workload Broker jobs can be defined requiring one or more
logical resources. For example, any job requiring logical resource DB2 would be
automatically assigned to one of the computers that have this logical resource
associated to it.

Group Resources
Tivoli Dynamic Workload Broker group resources are typically used to represent
groups of computers with similar hardware, software, or other logical
characteristics. For example, you might create a group resource named research
and add to it all the computers in the research department.

Tivoli Dynamic Workload Broker jobs can be defined requiring a group resource.
For example, any job requiring group resource research would be automatically
assigned to one of the computers that have this group resource associated to it.

Tivoli Workload Scheduler for z/OS special resources
Tivoli Workload Scheduler for z/OS has the special resources concept. These
special resources are typically use to represent some job requirement such as
software licenses or application.

A feature of Tivoli Workload Scheduler for z/OS special resources is the
availability status (can be yes or no). Tivoli Workload Scheduler for z/OS provides
advanced mechanisms for event-based handling of the special resource
availability status. A common usage of special resource availability status is to
control when jobs are allowed to run during the day. Any job requiring a special
resource is only eligible for submission if the special resource availability status is
yes.

Resource scope
When working with planning and choreography in a Tivoli Dynamic Workload
Broker and Tivoli Workload Scheduler for z/OS end-to-end integrated
environment it is important to keep in mind that the resource concepts have

566 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

different job scheduling scopes. By scope we mean what jobs that can use, and
be controlled by, a resource requirement.

The scope of Tivoli Dynamic Workload Broker logical resources and group
resources is the jobs being managed by the Tivoli Dynamic Workload Broker
server. The server makes scheduling decisions based on job resource
requirements and availability of logical resources or group resources.

The scope of Tivoli Workload Scheduler for z/OS end-to-end special resources is
the jobs being managed by the Tivoli Workload Scheduler for z/OS end-to-end
engine. The Tivoli Workload Scheduler engine makes scheduling decisions
based on job resource requirements and availability of special resources. The
special resource concept is broader in scope because it can be used for any
workstation and for any type of job.

 Chapter 11. Managing Tivoli Dynamic Workload Broker jobs using Tivoli Workload Scheduler for z/OS

11.5.2 Sample resource usage scenario

In our sample usage scenario we look at a fictive company that has integrated
Tivoli Dynamic Workload Broker and Tivoli Workload Scheduler for z/OS
end-to-end. The company has three main business areas (A, B, and C), and
each area has batch workloads running on distributed servers. Job scheduling to
the distributed servers is dynamically managed using the Tivoli Dynamic
Workload Broker. Business area A also has a large amount of mainframe jobs.
The scenario is shown in Figure 11-18.

Figure 11-18 Business configuration input to resource choreography planning

Note: The purpose of the scenario is to illustrate how the resource concepts
can be used. Some user interface samples are included, but detailed
step-by-step user interface actions have been deliberately left out.

Tivoli Workload Scheduler for z/OS end-to-end

TWS for z/OS
Engine

z/OS

Windows
2003

Tivoli Dynamic Workload Broker

AIX

TDWB
Server

TWS Agent

Windows 2003

Linux Linux Windows
2003

Business area A Business area B Business area C

DB2 DB2 DB2

Barcelona Oslo Nice CairoAthens

Windows
2003

DB2
Business area A

568 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Let us see how the company staff responsible for planning and choreography has
used the resource concepts available to address the following requirements:

� Requirement 1

Business area A distributed jobs must only be allowed to run on computers
belonging to this business area (currently computers Barcelona and Oslo).

Correspondingly business area B distributed jobs must only be allowed to run
on computer Athens, and business area C distributed jobs must only be
allowed to run on computers Nice and Cairo.

� Requirement 2

Certain jobs require access to DB2 software. These jobs must only run on
computers were DB2 is installed and ready to use. This requirement applies
to all business areas. Also, several DB2 jobs must be allowed to run in
parallel.

� Requirement 3

Business area A uses online applications located on the mainframe (CICS®
transaction server) and on Linux machine Barcelona (Web server). Both
online applications access data stored in DB2.

The DB2 data is analyzed by business analysts submitting ad hoc batch jobs,
both on mainframe and on Linux servers. Some of these jobs are
resource-intensive DB2 SQL queries. During open office hours online
response time requirements are critical, so the resource-intensive DB2 query
jobs must not be allowed to run. Outside open office hours the jobs are
allowed to run and also there is currently no need to restrict how many jobs
are run in parallel.

Solution for requirement 1
This solution is based on Tivoli Dynamic Workload Broker group resources.
Three group resources are defined, as shown in Table 11-1.

Table 11-1 Tivoli Dynamic Workload Broker group resource setup

Group resource name Associated computers

RG-BusinessArea-A Barcelona, Oslo

RG-BusinessArea-B Athens

RG-BusinessArea-C Nice, Cairo

 Chapter 11. Managing Tivoli Dynamic Workload Broker jobs using Tivoli Workload Scheduler for z/OS

Figure 11-19 shows the group resource definitions in the Web Console.

Figure 11-19 Tivoli Dynamic Workload Broker Web Console Group Resource list

All broker managed jobs in business area A are defined with a requirement for
group resource RG-BusinessArea-A. Broker managed jobs in business areas B
and C are defined correspondingly. The group resource requirement is added to
the job brokering JSDL definition, as shown in Example 11-9. In the example the
job requires group resource RG-BusinessArea-C, which ensures that only
computers in business area C are candidates for running the job.

Example 11-9 Group resource requirement added to JSDL

<?xml version="1.0" encoding="UTF-8"?>
<jsdl:jobDefinition
xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl"
xmlns:jsdle="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdle"
description="Business area C Windows job" name="BA-C-Windows-job">
 <jsdl:application name="executable">
 <jsdle:executable>
 <jsdle:script>echo "Windows job is running"</jsdle:script>
 </jsdle:executable>
 </jsdl:application>
 <jsdl:resources>
 <jsdl:group name="RG-BusinessArea-C"/>
 </jsdl:resources>
</jsdl:jobDefinition>

570 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Solution for requirement 2
This solution is based on Tivoli Dynamic Workload Broker logical resources.
Three logical resources are defined in Table 11-2.

Table 11-2 Tivoli Dynamic Workload Broker logical resource setup

Figure 11-20 shows the logical resource definitions in the Web Console.

Figure 11-20 Logical resources list in Tivoli Dynamic Workload Broker Web Console

Name Type Quantity Associated
computers

BusinessArea-A-DB2 DB2 1 Barcelona

BusinessArea-B-DB2 DB2 1 Athens

BusinessArea-C-DB2 DB2 1 Nice

 Chapter 11. Managing Tivoli Dynamic Workload Broker jobs using Tivoli Workload Scheduler for z/OS

All broker managed DB2 jobs in business area A are defined with a requirement
for logical resource BusinessArea-A-DB2. Broker managed jobs in business
areas B and C that require DB2 are defined correspondingly. The logical
resource requirement is added to the job brokering JSDL definitions, as shown in
Example 11-10. In the example the job requires both logical resource
BusinessArea-A-DB2 and group resource RG-BusinessArea-A, which ensures
that only computers in business area A with DB2 installed are candidates for
running the job.

Example 11-10 Defining JDSL job definition with both logical and group resource

<?xml version="1.0" encoding="UTF-8"?>
<jsdl:jobDefinition
xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl"
xmlns:jsdle="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdle"
description="Business area A DB2 query job" name="BA-A-DB2QUERY1">
 <jsdl:application name="executable">
 <jsdle:executable>
 <jsdle:script>echo "DB2 query job is running"</jsdle:script>
 </jsdle:executable>
 </jsdl:application>
 <jsdl:resources>
 <jsdl:logicalResource name="BusinessArea-A-DB2" subType="DB2"/>
 <jsdl:group name="RG-BusinessArea-A"/>
 </jsdl:resources>
</jsdl:jobDefinition>

572 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Figure 11-21 shows how the logical resource requirement was added to a job
using the Job Brokering Definition Console. In the Logical Resource Details
section only logical resource Name and Type was specified. Logical resource
Quantity was left blank, which will have the desired effect that several jobs can
run in parallel using the resource as shared.

Figure 11-21 Adding logical resource requirement using Job Brokering Definition Console

Solution for requirement 3
This solution is based on Tivoli Workload Scheduler for z/OS special resources.
This was chosen because the requirement applies to both mainframe and
distributed jobs.

 Chapter 11. Managing Tivoli Dynamic Workload Broker jobs using Tivoli Workload Scheduler for z/OS

A special resource is defined, as shown in Example 11-11.

Example 11-11 Tivoli Workload Scheduler for z/OS special resource setup

Special resource : BUSINESS-AREA-A-DB2-QUERIES
Used For : Planning and control
On Error : Free
On Complete : Assume system default
Defaults
 Quantity : 1
 Available : No

The special resource default availability is set to no. Availability status switching
to Available=Yes after online office hours is controlled by a job stream that also
closes down the CICS transaction server. The job stream contains two
mainframe jobs, which runs in sequence:

� The first job causes the Tivoli Workload Scheduler for z/OS engine to send a
signal to system automation software to close down the CICS transaction
server. When close down is complete, system automation signals the Tivoli
Workload Scheduler for z/OS engine to complete the job.

� The second job executes a mainframe job that by use of Tivoli Workload
Scheduler for z/OS interfaces sends an SRSTAT event instructing the engine
to change the special resource BUSINESS-AREA-A-DB2-QUERIES
availability status to yes.

Availability switching to no at beginning of online office hours is controlled by a
similar job stream that also starts up the CICS transaction server.

All resource-intensive DB2 query jobs, both mainframe and distributed, used by
analysts in business area A are defined with a requirement for special resource
BUSINESS-AREA-A-DB2-QUERIES. The special resource requirement is added
to the jobs in the appropriate Tivoli Workload Scheduler for z/OS job stream
definitions.

574 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Figure 11-22 shows how the special resource was added to a job using TWS for
z/OS ISPF panels SPECIAL RESOURCES. The special resource was added
with Qty=1 (quantity) and Shr/Ex=S (allocation type Shared), which will have the
desired effect that several DB2 jobs can run in parallel using the resource as
shared.

Figure 11-22 Special resource added to Tivoli Workload Scheduler end-to-end job

------------------------------ SPECIAL RESOURCES ------------- Row 1 to 1 of 1
Command ===> Scroll ===> CSR

Enter/Change data in the rows, and/or enter any of the following
row commands:
I(nn) - Insert, R(nn),RR(nn) - Repeat, D(nn),DD - Delete

Operation : TDWB 005 WBBADB2Q BA-A DB2 query

Row Special Qty Shr Keep On Avail on
cmd Resource Ex Error Complete
'''' BUSINESS-AREA-A-DB2-QUERIES_________________ 1_____ S _ _

 Chapter 11. Managing Tivoli Dynamic Workload Broker jobs using Tivoli Workload Scheduler for z/OS

Solutions at work
Figure 11-23 shows the result of solutions one and two. Four sample jobs have
been run. Tivoli Dynamic Workload Broker has allocated computers to the jobs
using the logical resources and group resources requirements as follows:

� Job BA-C-Windows-job requires group resource RG-BusinessArea-C. The job
was allocated and run on computer Cairo.

� Job BA-A-DB2QUERY1 requires logical resource BusinessArea-A-DB2 and
group resource RG-BusinessArea-C. The job was allocated and run on
computer Barcelona.

� Job BA-A-Linuxjob requires group resource RG-BusinessArea-A. The job
was run twice. In the first run the job was allocated and run on computer
Barcelona. The second run was on computer Oslo.

Figure 11-23 Job instance list in Tivoli Dynamic Workload Broker Web Console

576 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Figure 11-24 shows the result of solution three. A screen sample from a Job
Scheduling Console special resource plan list shows the status for special
resource BUSINESS-AREA-A-DB2-QUERIES.

Figure 11-24 Job waiting for TWS for z/OS special resource

The top part shows that special resource BUSINESS-AREA-A-DB2-QUERIES is
in status Not available and that the resource has jobs waiting for it (Yes in the
Jobs Waiting column).

The bottom part shows a job (TWS job WBBADB2Q in job stream with same
name) waiting for the special resource. The waiting reason is UNAVL, because
the special resource status is Not available. The job is defined to workstation
TDWB, which in our scenario means that this is a Tivoli Dynamic Workload
Broker job.

This situation is an example of what would occur if, for example, a developer in
business area A adds a DB2 query job stream during online office hours.

11.5.3 Serializing access to resources

Both Tivoli Dynamic Workload Broker logical resources and Tivoli Workload
Scheduler for z/OS special resources can be used to address the need for
serializing access to resources.

Let us continue looking at the fictive company configuration shown in
Figure 11-18 on page 568 in 11.5.2, “Sample resource usage scenario” on
page 568.

Business areas A and C both need a solution for a new business requirement:
DB2 jobs must no longer be allowed to run in parallel.

 Chapter 11. Managing Tivoli Dynamic Workload Broker jobs using Tivoli Workload Scheduler for z/OS

The solution for business area A is based on Tivoli Workload Scheduler for z/OS
special resources. The Tivoli Workload Scheduler for z/OS job stream definitions
are modified for the DB2 jobs in business area A, as shown in Figure 11-25. The
special resource allocation is changed to Shr/Ex=E (allocation type Exclusive),
which will have the desired effect that only one DB2 job at a time can run using
the resource as exclusive.

Figure 11-25 Special resource allocation type exclusive

------------------------------ SPECIAL RESOURCES ------------- Row 1 to 1 of 1
Command ===> Scroll ===> CSR

Enter/Change data in the rows, and/or enter any of the following
row commands:
I(nn) - Insert, R(nn),RR(nn) - Repeat, D(nn),DD - Delete

Operation : TDWB 005 WBBADB2Q BA-A DB2 query

Row Special Qty Shr Keep On Avail on
cmd Resource Ex Error Complete
'''' BUSINESS-AREA-A-DB2-QUERIES_________________ 1_____ E _ _

578 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

The solution for business area C is based on Tivoli Dynamic Workload Broker
logical resources. The Tivoli Dynamic Workload Broker job brokering definitions
are modified for the DB2 jobs in business area C, as shown in Figure 11-26. The
logical resource quantity is specified to 1, which will have the desired effect that
only one job at a time can run using the resource as exclusive.

Figure 11-26 Adding logical resource requirement with quantity using JBDC

 Chapter 11. Managing Tivoli Dynamic Workload Broker jobs using Tivoli Workload Scheduler for z/OS

11.5.4 Job affinity definition

In Tivoli Dynamic Workload Broker, you define affinity relationships between two
or more jobs when you want them to run on the same computer resource. There
are two types of Tivoli Dynamic Workload Broker affinities:

� Tivoli Dynamic Workload Broker affinity
� Tivoli Workload Scheduler affinity

We discuss the Tivoli Workload Scheduler affinity relationship and how it is used
in an environment where Tivoli Dynamic Workload Broker is integrated with Tivoli
Workload Scheduler for z/OS end-to-end.

The Tivoli Dynamic Workload Broker affinity type is not covered here. It is
described in detail in Chapter 5, “Advanced guide to Tivoli Dynamic Workload
Broker” on page 175.

For the purpose of this discussion we assume that we have a job stream
consisting of two jobs with TWS job names WBAFJ1 and WBAFJ2. The
requirements are:

� The two jobs must run using Tivoli Dynamic Workload Broker to ensure that
they are dynamically assigned to a computer with appropriate CPU
resources.

� The two jobs must run in sequence, WBAFJ1 first and then WBAFJ2.

� The jobs must also run on the same computer, because analysis results
generated by the first job are stored on the computer hard drive and must be
available to the second job.

The solution for the first requirement is to define both jobs to run on a workstation
that represents Tivoli Dynamic Workload Broker. In our case the workstation is
TDWB, as shown in Example 11-12.

Example 11-12 TWS for z/OS job stream with two jobs

Application : WBAFFINITY1 TDWB sample application

Row Oper Duration Job name Operation text
cmd ws no. HH.MM.SS
'''' TDWB 005 00.00.01 WBAFJ1__ FTP get data and analyze
'''' TDWB 010 00.00.01 WBAFJ2__ Report generation_______

580 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

The solution for the second requirement is to define the first job as an internal job
predecessor to the second job, as shown in Example 11-13.

Example 11-13 TWS for z/OS job stream with internal predecessor

Application : WBAFFINITY1 TDWB sample application

Row Oper Duration Job name Internal predecessors
cmd ws no. HH.MM.SS
'''' TDWB 005 00.00.01 WBAFJ1__ ___ ___ ___ ___ ___ ___ ___ ___
'''' TDWB 010 00.00.01 WBAFJ2__ 005 ___ ___ ___ ___ ___ ___ ___

The solution for the third requirement is to add a Tivoli Dynamic Workload Broker
TWS affinity relationship between the two jobs. This is done by defining the Tivoli
Workload Scheduler for z/OS end-to-end SCRPTLIB members, as shown in
Example 11-14.

Example 11-14 Defining TDWB job affinity between TWS for z/OS end-to-end jobs

EDIT TWS.V8R30.SCRPTLIB(WBAFJ1) - 01.02 Columns 00001 00072
Command ===> Scroll ===> CSR
****** ***************************** Top of Data ******************************
000001 JOBREC
000002 JOBCMD('FTP-get-and-analyze')
****** **************************** Bottom of Data ****************************

EDIT TWS.V8R30.SCRPTLIB(WBAFJ2) - 01.07 Columns 00001 00072
Command ===> Scroll ===> CSR
****** ***************************** Top of Data ******************************
000001 JOBREC
000002 JOBCMD('Report-generate -twsAffinity jobname=J005_WBAFJ1')
****** **************************** Bottom of Data ****************************

The JOBCMD() parameter for the second job contains two parts, the broker job
name and the TWS affinity definition. The general syntax for the TWS affinity
definition is:

-twsAffinity jobname=J<jobnumber>_<TWSjobName>

Where:

<jobnumber> This is the operation sequence number (001–255) of the
affinity relationship target job.

<TWSjobName> This is the TWS for z/OS job name of the affinity
relationship target job.

 Chapter 11. Managing Tivoli Dynamic Workload Broker jobs using Tivoli Workload Scheduler for z/OS

11.5.5 Job recovery and restart

Tivoli Workload Scheduler for z/OS end-to-end includes choreography
capabilities that allow you to prepare for job recovery and restart handling of
Tivoli Dynamic Workload Broker jobs that end with a non-zero return code.
Recovery and restart actions can include a recovery prompt, submission of a
recovery job, or both.

� Recovery and restart options and actions are defined in the Tivoli Workload
Scheduler for z/OS end-to-end SCRPTLIB member.

� Manual recovery and restart actions are performed using Tivoli Workload
Scheduler for z/OS end-to-end user interfaces.

� Automatic recovery and restart actions are performed by Tivoli Workload
Scheduler for z/OS end-to-end.

Let us look at a simple example to illustrate some of the recovery and restart
choreography options available. For the purpose of our discussion we assume
that job stream name WBERRORTEST3 with job WBFAILUR has been defined.
Example 11-15 shows SCRPTLIB member WBFAILUR that instructs Tivoli
Workload Scheduler for z/OS Scheduling end-to-end to run a Tivoli Workload
Broker job.

Example 11-15 Defining recovery and restart options in SCRPTLIB member

JOBREC
JOBCMD('twsz-UNIX-script')
RECOVERY OPTION(STOP)
MESSAGE('Continue if RC<=8.')
JOBCMD('twsz-UNIX-recovery-script')

Important: The underscore character between the jobnumber and the
TWSjobName is required. Also, if the JOBCMD() parameter includes more
than one word, it must be enclosed within single or double quotation marks.

Restriction: Tivoli Workload Scheduler affinity relationships can only be used
between jobs that are part of the same job stream.

582 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

The SCRPTLIB statements used are JOBREC and RECOVERY. When job
stream WBERRORTEST3 is run from the current plan the following sequence of
events occur:

1. Tivoli Workload Scheduler for z/OS end-to-end submits job WBFAILUR to
Tivoli Dynamic Workload Broker.

2. Tivoli Dynamic Workload Broker runs job twsz-UNIX-script and the execution
result is returned to Tivoli Workload Scheduler for z/OS end-to-end.

3. If job WBFAILUR ends in complete status, then no recovery or restart actions
are performed. Scheduling of successors (if there are any) continues.

4. If job WBFAILUR ends in error status:

a. Tivoli Workload Scheduler for z/OS end-to-end waits for manual
intervention.

b. When manual recovery is invoked a recovery prompt with message
text'Continue if RC<=8.' is displayed.

c. If the the reply to recovery prompt is no, no further recovery is performed.
The job WBFAILUR remains in error status.

d. If the reply to the recovery prompt is yes, Tivoli Workload Scheduler for
z/OS end-to-end submits a recovery job to the Tivoli Dynamic Workload
Broker. In out example the recovery job definition instructs Tivoli Dynamic
Workload Broker to run job twsz-UNIX-recovery-script.

e. Tivoli Workload Broker runs job twsz-UNIX-recovery-script and the
execution result is returned to Tivoli Workload Scheduler for z/OS
end-to-end.

f. If the recovery job is successful, job WBFAILUR is set to completed status
and scheduling of successors (if there are any) continues.

g. If the recovery job ends in error status, no further recovery is performed.
Job WBFAILUR remains in error status.

Figure 11-27 on page 584 shows how a trial run of job stream WBERRORTEST3
is in the process of being handled by an operations analyst using the Job
Scheduling Console. The figure shows:

� The Job Scheduling Console window.

� Job WABFAILUR in status error with error code 008 (blue shaded line at top
of figure).

� The Recovery Information window (in center of figure).

� The Operations analyst is about to select yes as reply to PROMPT Message
Continue if RC<=8.

 Chapter 11. Managing Tivoli Dynamic Workload Broker jobs using Tivoli Workload Scheduler for z/OS

Figure 11-27 Job Instance Recovery information - recovery prompt

584 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Figure 11-28 on page 586 shows the situation after the recovery job has run
successfully. The operations analyst is using the Job Scheduling Console to
verify the results of recovery actions. The figure shows:

� The Job Scheduling Console window.

� Job WABFAILUR in status successful (blue shaded line at top of figure).

� The Recovery Information window (in center of figure).

� Recovery Job Information shows that the recovery job (with job number
UNX16956) ended in status completed and that it was run at workstation
TDWB.

 Chapter 11. Managing Tivoli Dynamic Workload Broker jobs using Tivoli Workload Scheduler for z/OS

Figure 11-28 Job Instance Recovery information - recovery completed

11.5.6 Job tailoring using variables

Job tailoring enable jobs to be automatically edited using information that is
known only at job setup or submit. This can reduce your dependency on
time-consuming and error-prone manual editing of jobs. Tivoli Dynamic Workload
Broker and Tivoli Workload Scheduler for z/OS end-to-end both allow you to

586 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

choreograph job scheduling using automatic variable substitution in job
definitions.

In this section we use a sample scenario to illustrate how the job tailoring
capability of both products can be used and how the two products can
complement each other.

First we briefly describe the variable constructs that are used in our sample
scenario and then we continue with a step-by-step description of the scenario
itself.

Tivoli Workload Scheduler for z/OS variables in SCRPTLIB
Tivoli Workload Scheduler for z/OS end-to-end has several job tailoring
capabilities. For the purpose of our discussion we focus on the usage of variables
in SCRPTLIB members.

The content of a sample SCRPTLIB member is shown in Example 11-16, where
variable &OADID is used in the JOBCMD() parameter.

Example 11-16 Using variable &OADID in SCRPTLIB member

VARSUB
JOBREC
JOBCMD('twsz-tdwbcli-cmd -var tdwbcmdparms=-alias "TDWB#&OADID*"')

The variable &OADID is a so-called supplied variable, and it will be automatically
substituted with the name of the job stream occurrence containing the job. Tivoli
Workload Scheduler for z/OS supplies variables that you can use in your
business, and &OADID is one of them. Besides the supplied variables, you can
also define your own installation-specific variables, which are termed
user-defined variables.

Substitution of variables in SCRPTLIB members occurs when:

� The daily planning process creates the symphony file.
� The job stream is added to the plan manually.

Refer to IBM Tivoli Workload Scheduler for z/OS Scheduling End-to-end,
SC32-1732, for full description of syntax, substitution rules, and variable usage in
SCRPTLIB members.

Note: The purpose of the scenario is to illustrate how variables can be used.
Some user interface samples are included, but detailed step-by-step user
interface actions have been deliberately left out.

 Chapter 11. Managing Tivoli Dynamic Workload Broker jobs using Tivoli Workload Scheduler for z/OS

Refer to IBM Tivoli Workload Scheduler for z/OS Managing the Workload,
SC32-1263, for a full description of supplied and user-defined variables.

Tivoli Dynamic Workload Broker variables in JSDL
In a JSDL definition, you can define variables that associate a symbolic name
with a value. The variables defined can be referenced in values elsewhere in the
JSDL definition using the format ${variable_name}.

Example 11-17 shows an example of variables definition and reference in a
JDSL. The relevant statements are marked with bold text.

Example 11-17 Using variables in JSDL definition

<?xml version="1.0" encoding="UTF-8"?>
<jsdl:jobDefinition xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl"
xmlns:jsdle="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdle" description="Sample
TDWB Windows job executing the TDWB CLI" name="twsz-tdwbcli-cmd">
 <jsdl:annotation>This job can run on Windows where TDWB server is
installed</jsdl:annotation>
 <jsdl:variables>
 <jsdl:stringVariable name="tdwbcmd">"C:\Program
Files\IBM\ITDWB\Server\bin\jobquery.bat"</jsdl:stringVariable>
 <jsdl:stringVariable name="tdwbcmdparms">-name "tws*"</jsdl:stringVariable>
 </jsdl:variables>
 <jsdl:application name="executable">
 <jsdle:executable path="C:\utilities\tdwbcli.cmd" workingDirectory="c:\">
 <jsdle:arguments>
 <jsdle:value>${tdwbcmd} ${tdwbcmdparms}</jsdle:value>
 </jsdle:arguments>

</jsdle:executable>
 </jsdl:application>
 <jsdl:resources>
 <jsdl:candidateHosts>
 <jsdl:hostName>athens</jsdl:hostName>
 </jsdl:candidateHosts>
 </jsdl:resources>
</jsdl:jobDefinition>

In the example two variables are defined with names and default values shown in
Table 11-3.

Table 11-3 JSDL variable name and default values

Variable name Default value

tdwbcmd “C:\Program Files\IBM\ITDWB\Server\bin\jobquery.bat”

588 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

In Example 11-17 on page 588 the two variables are referenced in the part of the
JDSL that defines the program executable and the parameters to be passed to it.
The value element is defined as ${tdwbcmd} ${tdwbcmdparms}. The resulting
command that is built (using default variable values) by Tivoli Dynamic Workload
Broker and used to start job execution is shown in Example 11-18.

Example 11-18 TDWB job start command resulting from variables substitution

C:\utilities\tdwbcli.cmd
“C:\Program Files\IBM\ITDWB\Server\bin\jobquery.at” -name "tws*"

Substitution of variables in JSDL is done by the Tivoli Dynamic Workload Broker
server and occurs when the job is submitted. JSDL variable values can be
overridden when the jobsubmit command is issued to the Tivoli Dynamic
Workload Broker server. In the scenario that follows we use this overriding
mechanism when Tivoli Workload Scheduler for z/OS end-to-end submits job
requests to the Tivoli Dynamic Workload Broker server.

Refer to the Tivoli Dynamic Workload Broker User’s Guide for a more detailed
description of Tivoli Dynamic Workload Broker variables. Variables are also
described in Chapter 5, “Advanced guide to Tivoli Dynamic Workload Broker” on
page 175.

In our sample scenario that follows we show you how to define and use variables
in JSDL using the Job Brokering Definition Console.

11.5.7 Sample variables usage scenario

In our sample scenario we have a fictive company that has integrated Tivoli
Dynamic Workload Broker and Tivoli Workload Scheduler for z/OS end-to-end.
Job scheduling to distributed servers is dynamically managed using the Tivoli
Dynamic Workload Broker. The Tivoli Dynamic Workload Broker server is
running on a Windows 2003 computer named Athens. The Athens computer also
has a Tivoli Dynamic Workload Broker agent installed.

tdwbcmdparms -name "tws*"

Variable name Default value

 Chapter 11. Managing Tivoli Dynamic Workload Broker jobs using Tivoli Workload Scheduler for z/OS

Business need
Let us see how the company staff responsible for planning and choreography
uses variables as part of a solution that addresses the following needs:

� Operation analysts would like a more effective way to retrieve and access
information about jobs that have been run by the Tivoli Dynamic Workload
Broker. Currently, they log on to the computer where the broker server is
running and issue Tivoli Dynamic Workload Broker command-line interface
jobquery commands.

� Operations analysts would also like to issue the queries and get the results
while using the Tivoli Workload Scheduler for z/OS user interfaces.

� If possible, queries should be run automatically when all jobs in certain job
streams have been run.

Overview of solution components
The solution components; are:

� A Windows command file. The purpose of this command file is to issue a
Tivoli Dynamic Workload Broker CLI command. The CLI command to be
issued (and its parameters) is delivered to the command file as parameters.

� A Tivoli Dynamic Workload Broker job that executes the Windows command
file.

� Tivoli Dynamic Workload Broker JSDL variables are used when specifying the
Windows command file parameters in the JDSL.

� A Tivoli Workload Scheduler for z/OS end-to-end job that runs the JSDL job.
The end-to-end job is defined so that it specifies overriding values for the
JSDL variables.

� Tivoli Workload Scheduler for z/OS variables are used in the end-to-end job
definition. The purpose is to achieve automatic insert of job stream
occurrence information at the time that the end-to-end job is added to the
current plan.

Solution implementation
We now describe the implementation of the four components one at a time.

Windows command file TDWBCLI.cmd
A Windows command file was created as follows:

File name TDWBCLI.cmd
File location C:\Utilities
File content %*

590 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

A sample test (specifying dir TDWBCLI* as input) of the TDWBCLI.cmd from a
command prompt is shown in Example 11-19.

Example 11-19 TDWBCLI.cmd executed from command prompt

C:\Utilities>TDWBCLI.cmd dir TDWBCLI*
C:\Utilities>call dir TDWBCLI*
 Volume in drive C has no label.
 Volume Serial Number is D820-9A05

 Directory of C:\Utilities

03/30/2007 06:14 AM 7 TDWBCLI.cmd
1 File(s) 7 bytes

 0 Dir(s) 54,697,168,896 bytes free

Tivoli Dynamic Workload Broker job with variables
A JSDL job was created using the Job Brokering Definition Console.

 Chapter 11. Managing Tivoli Dynamic Workload Broker jobs using Tivoli Workload Scheduler for z/OS

Figure 11-29 shows how Job definition information was filled in with:

� Name, description, and detailed description.

� Two string variables, tdwbcmd and tdwbcmdparms. Variables are added by
clicking Add String Variable.

� Variable tdwbcmdparms defined with default value -name “tws*”.

Figure 11-29 Name, description, and variables are added to Tivoli Dynamic Workload Broker job

The variable tdwbcmd was defined with the default value:

"C:\Program Files\IBM\ITDWB\Server\bin\jobquery.bat"

592 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

The delimiting double quotes are part of the value. Why this value? Well, the first
part, the path, is our Tivoli Dynamic Workload Broker installation directory
containing the command-line interface executables, and the last part is the name
of the jobquery command executable.

Next, application information was filled in, as shown in Figure 11-30, using the
following information:

Application Type Executable
Executable file C:\Utilities\TDWBCLI.cmd
Working Directory C:\
Parameter details ${tdwbcmd} ${tdwbcmdparms}

Figure 11-30 Executable and its parameters are added to Tivoli Dynamic Workload Broker job

 Chapter 11. Managing Tivoli Dynamic Workload Broker jobs using Tivoli Workload Scheduler for z/OS

Note: Credentials information was not supplied because the Tivoli Dynamic
Workload Broker does not support it for Windows jobs. Instead, credentials
information was supplied by customizing the CLIConfig.properties file located
in server_installation_directory/config. Refer to the Tivoli Dynamic Workload
Broker User’s Guide for further details.

You must supply a user name and password when using a command-line
interface if Tivoli Dynamic Workload Broker security is enabled, and this was
the case in our scenario.

594 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

The last information needed in the job definition is the requirement that the job
must run on the athens computer. This was done by adding the athens host
name to the list of candidate hosts in the Resources pane, as shown in
Figure 11-31.

Figure 11-31 Candidate host is added to Tivoli Dynamic Workload Broker job

 Chapter 11. Managing Tivoli Dynamic Workload Broker jobs using Tivoli Workload Scheduler for z/OS

Finally, the job definition was saved as twsz-tdwbcli-cmd.jsdl and uploaded to the
Tivoli Dynamic Workload Broker job repository. This is shown in Figure 11-32.

Figure 11-32 Uploading job to TDWB job repository

596 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Tivoli Workload Scheduler for z/OS end-to-end job with variables
A SCRPTPLIB member was created for usage with Tivoli Workload Scheduler for
z/OS end-to-end job streams. The content of SCRPTLIB member WBCLI is
shown in Example 11-20.

Example 11-20 SCRPTLIB member WBCLI

VARSUB
JOBREC
JOBCMD('twsz-tdwbcli-cmd -var tdwbcmdparms=-alias "TDWB#&OADID*"')

Let us look at the example in more detail:

� The VARSUB statement is used to instruct Tivoli Workload Scheduler for
z/OS to perform variable substitution in the JOBREC statement.

� The JOBREC parameter JOBCMD() is used to specify two things. First, the
name of the Tivoli Dynamic Workload Broker job to run (that is,
twsz-tdwbcli-cmd), and second that the Tivoli Dynamic Workload Broker
tdwbcmdparms job variable should be overridden with the value -alias
"TDWB#&OADID*".

� The Tivoli Workload Scheduler for z/OS &OADID variable is used and it will
be automatically substituted with the name of the job stream occurrence
containing the job. Substitution occurs when the job is added to the current
plan.

 Chapter 11. Managing Tivoli Dynamic Workload Broker jobs using Tivoli Workload Scheduler for z/OS

Note: The Tivoli Dynamic Workload Broker tdwbcmd job variable is not
overridden in the end-to-end job definition, so it will take its defined default
value "C:\Program Files\IBM\ITDWB\Server\bin\jobquery.bat" when the broker
job twsz-tdwbcli-cmd is run.

The tdwbcmdparms job variable, however, is overridden as shown to make it
possible to add the job to different job streams and get the desired results
without having to edit the SCRPTLIB member each time. For the purpose of
describing how this works, let us assume that job streams WBTDWBCLI and
WBTDWBCLITEST are added to the current plan and that both job streams
contain the job WBCLI. It works as follows:

1. Job stream WBTDWBCLI is added to the current plan. The &OADID
variable in the JOBCMD() parameter is substituted with value
WBTDWBCLI. The JOBCMD() value stored in the current plan and
symphony file is:

'twsz-tdwbcli-cmd -var tdwbcmdparms=-alias "TDWB#WBTDWBCLI*"'

2. Job stream WBTDWBCLITEST is added to the current plan. The &OADID
variable in the JOBCMD() parameter is substituted with value
WBTDWBCLITEST. The JOBCMD() value stored in the current plan and
symphony file is:

'twsz-tdwbcli-cmd -var tdwbcmdparms=-alias "TDWB#WBTDWBCLITEST*"'

3. Job WBCLI in job stream WBTDWBCLI is submitted. The Tivoli Dynamic
Workload Broker runs job twsz-tdwbcli-cmd, which issues a CLI jobquery
command listing all jobs with a job alias matching "TDWB#WBTDWBCLI*".

4. Job WBCLI in job stream WBTDWBCLITEST is submitted. The Tivoli
Dynamic Workload Broker runs job twsz-tdwbcli-cmd, which issues a CLI
jobquery command listing all jobs with a job alias matching
"TDWB#WBTDWBCLITEST*".

598 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Solution at work
To test the solution a Tivoli Workload Scheduler for z/OS end-to-end job stream
WBTDWBCLITEST was created with three jobs, as shown in Table 11-4.

Table 11-4 Jobs in job stream WBTDWBCLITEST

All three jobs are run at workstation TDWB, which is used for Tivoli Dynamic
Workload Broker jobs. The extended job name is not required but was used to
contain the Tivoli Dynamic Workload Broker job name.

Note: The Tivoli Workload Scheduler agent assigns a job alias to each job it
forwards to the Tivoli Dynamic Workload Broker server.

In our lab environment the Tivoli Workload Scheduler agent received jobs from
Tivoli Workload Scheduler for z/OS end-to-end V8.3. The format of the job
alias assigned was:

<cpuschedname>#<schedname>.J<jobnumber>_<jobname>.SCHEDID-<schedid>.
ON-<yymmdd>.JNUM-<nnnn>

Where:

� cpuschedname is the job stream workstation.
� schedname is the job stream name.
� jobname is the job name.
� schedid is the job stream occurrence token.
� yymmdd is the schedule date of the job stream.
� nnnn is a job number created by the Tivoli Workload Scheduler agent.

The job alias can be used in command-line interface (for example, a jobquery):

jobquery.bat -alias “TDWB#WBTDWBCLITEST*”

That will return job information for jobs run on workstation TDWB, with a job
stream name matching pattern WBTDWBCLITEST*.

workstation Operation
number

Job name Extended job
name

TDWB 005 WBQUERY db2-query1

TDWB 010 WBQUERY db2-query1

TDWB 050 WBCLI twsz-tdwbcli-cmd

 Chapter 11. Managing Tivoli Dynamic Workload Broker jobs using Tivoli Workload Scheduler for z/OS

The job stream runs two DB2 query jobs (job name WBQUERY). A third job
WBCLI was added to submit the CLI query automatically after the two
WBQUERY jobs have run. This job order is shown in Figure 11-33.

Figure 11-33 Job stream WBTDWBCLITEST in Job Scheduling Console job stream
editor

The job stream was added to the current plan and all three jobs completed
successfully.

Example 11-21 shows the WBCLI job log, which contains output from the
jobquery command. The output has been slightly edited to enhance readability.

Example 11-21 WBCLI job log with output from TDWB CLI jobquery command

===
= JOB : ATHENS#TWSZ-TDWBCLI-CMD
= USER : TWSE2E
= JCLFILE : TWSZ-TDWBCLI-CMD -VAR TD
= JOB NUMBER: 964470674
= MON APR 16 01:22:58 PDT 2007
===.
TWS AND TDWB ENVIRONMENT WAS SET UP SUCCESSFULLY!.

C:\>CALL "C:\PROGRAM FILES\IBM\ITDWB\SERVER\BIN\JOBQUERY.BAT"
-ALIAS "TDWB#WBTDW BCLITEST*"

600 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

CALL JOB DISPATCHER TO QUERY JOBS
SUCCESS RETURNED FROM JOB DISPATCHER
THERE ARE 3 JOBS FOUND FOR YOUR REQUEST
DETAILS ARE AS FOLLOWS:

JOB NAME: TWSZ-TDWBCLI-CMD.
JOB ALIAS: TDWB#WBTDWBCLITEST.J050_WBCLI.ON-20070316.JNUM-964470674.
JOB ID: 120A5F45-B86B-3A49-8D5C-09C55C3BCE0C.
JOB STATUS: EXECUTING.
JOB EPR: HTTP://ATHENS:9550/JDSERVICEWS/SERVICES/JOB.
JOB SUBMITTER: ADMINISTRATOR.
JOB SUBMITTER TYPE: N/A.
JOB SUBMIT TIME: MON APR 16 01:22:46 PDT 2007.
JOB START TIME: MON APR 16 01:22:58 PDT 2007.
JOB LAST STATUS MESSAGE: N/A.
JOB DURATION: N/A.
JOB RETURN CODE: 0.
JOB RESOURCE NAME: ATHENS.
JOB RESOURCE TYPE: COMPUTERSYSTEM.

JOB NAME: DB2-QUERY1.
JOB ALIAS: TDWB#WBTDWBCLITEST.J005_WBQUERY.ON-20070316.JNUM-964457596.
JOB ID: 251F5BBA-4F7A-3928-88AF-9CE11A301A27.
JOB STATUS: SUCCEEDED_EXECUTION.
JOB EPR:
HTTP://ATHENS:9550/JDSERVICEWS/.........................ERVICES/JOB.
JOB SUBMITTER: ADMINISTRATOR.
JOB SUBMITTER TYPE: N/A.
JOB SUBMIT TIME: MON APR 16 01:22:33 PDT 2007.
JOB START TIME: SUN APR 15 22:16:23 PDT 2007.
JOB END TIME: SUN APR 15 22:16:23 PDT 2007.
JOB LAST STATUS MESSAGE: N/A.
JOB DURATION: 0D 0H 0M 0S 0MS .
JOB RETURN CODE: 0.
JOB RESOURCE NAME: BARCELONA.ITSC.AUSTIN.IBM.COM.
JOB RESOURCE TYPE: COMPUTERSYSTEM.

JOB NAME: DB2-QUERY1.
JOB ALIAS: TDWB#WBTDWBCLITEST.J010_WBQUERY.ON-20070316.JNUM-964456924.
JOB ID: EA5A3383-CA66-3486-AA0E-D53C42569897.
JOB STATUS: SUCCEEDED_EXECUTION.
JOB EPR: HTTP://ATHENS:9550/JDSERVICEWS/SERVICES/JOB.
JOB SUBMITTER: ADMINISTRATOR.
JOB SUBMITTER TYPE: N/A.
JOB SUBMIT TIME: MON APR 16 01:22:33 PDT 2007.

 Chapter 11. Managing Tivoli Dynamic Workload Broker jobs using Tivoli Workload Scheduler for z/OS

JOB START TIME: SUN APR 15 22:16:22 PDT 2007.
JOB END TIME: SUN APR 15 22:16:22 PDT 2007.
JOB LAST STATUS MESSAGE: N/A.
JOB DURATION: 0D 0H 0M 0S 0MS .
JOB RETURN CODE: 0.
JOB RESOURCE NAME: BARCELONA.ITSC.AUSTIN.IBM.COM.
JOB RESOURCE TYPE: COMPUTERSYSTEM.
===.
= EXIT STATUS : 0.
= SYSTEM TIME (SECONDS) : 3 ELAPSED TIME (MINUTES) : 0.
= USER TIME (SECONDS) : 3.
= MON APR 16 01:23:01 PDT 2007.
===.

11.6 Monitoring and control

Approaching and describing the monitoring and control of an integrated Tivoli
Dynamic Workload Broker and Tivoli Workload Scheduler for z/OS end-to-end
environment can be done in many ways.

We choose an approach where monitoring and control are addressed separately
for two main areas that are further subdivided as follows:

� Monitoring and control of the infrastructure components that make job
scheduling possible:

– Tivoli Dynamic Workload Broker server, agent ,and Tivoli Workload
Scheduler agent components

– Tivoli Workload Scheduler for z/OS end-to-end engine, domain manager,
and workstation components

– Network infrastructure that enables interaction between components

� Monitoring and control of the workload being scheduled.

– Monitoring workload progress

– Modifying job streams and jobs in Tivoli Workload Scheduler for z/OS
current plan

– Job error handling

Note: When the WBCLI job is run the jobquery command is issued from
TDWBCLI.cmd. The Tivoli Dynamic Workload Broker job twsz-tdwbcli-cmd will
therefore appear in the jobquery output with job status EXECUTING.

602 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Our focus in this section is activities and considerations related to monitoring and
control of workloads scheduled by Tivoli Workload Scheduler for z/OS
end-to-end to Tivoli Dynamic Workload Broker.

For a more comprehensive coverage of the subject refer to:

� IBM Tivoli Workload Scheduler for z/OS Managing the Workload, SC32-1263
� IBM Tivoli Workload Scheduler for z/OS Scheduling End-to-end , SC32-1732
� IBM Tivoli Dynamic Workload Broker User’s Guide, SC32-2281

11.6.1 Monitoring and control of infrastructure components

Outage or unavailability of one or more of the following infrastructure
components can seriously degrade or prevent scheduling of Tivoli Dynamic
Workload Broker workloads using Tivoli Workload Scheduler for z/S end-to-end:

� Tivoli Workload Scheduler for z/OS end-to-end components
– Tivoli Workload Scheduler for z/OS engine
– Tivoli Workload Scheduler domain managers
– Tivoli Workload Scheduler for z/OS end-to-end workstation

� Tivoli Dynamic Workload Broker components
– Tivoli Workload Scheduler agent
– Tivoli Dynamic Workload Broker server
– Tivoli Dynamic Workload Broker agents

� Network infrastructure that enables interaction between components

Note: In Tivoli Workload Scheduler for z/OS end-to-end the terms job stream
and application occurrence are synonyms when talking about the workload
content in the current plan. In this section we use both terms interchangeably.

 Chapter 11. Managing Tivoli Dynamic Workload Broker jobs using Tivoli Workload Scheduler for z/OS

Figure 11-34 along with the description that follows show how the components
interact when Tivoli Workload Scheduler for z/OS end-to-end submits a job to the
Tivoli Dynamic Workload Broker.

Figure 11-34 TWS for z/OS submitting job to Tivoli Dynamic Workload Broker

For the purpose of discussing Figure 11-34 we assume that job stream
WBJOBSTREAM1 with job WBJOB1 has been defined to run on workstation
TDWB. Workstation TDWB is used to submit jobs to the Tivoli Dynamic Workload
Broker. The operation number of job WBJOB1 is 005. The WBJOB1 definition
specifies that the Tivoli Dynamic Workload Broker job to run is tdwb-jobA.

The steps performed when the Tivoli Workload Scheduler for z/OS end-to-end
submits job WBJOB1 to Tivoli Dynamic Workload Broker are:

1. Job stream WBJOBSTREAM1 is added to the current plan by the Tivoli
Workload Scheduler for z/OS engine when:

– The Daily Planning process creates the symphony file.
– The job stream is added to the plan.

TDWB Server

TWS for z/OS end-to-end
MASTERDM

z/OS

TWS DomainA Tivoli Dynamic Workload Broker

TWS Agent
(SA TDWB)

AIX-A

TDWB
Agent

TDWB
Agent

AIX-B

Engine

Job stream name = WBJOBSTREAM1

Symphony
file

TWS for z/OS
current plan

WKST =TDWB
opno = 005
jobname=WBJOB1

JOBCMD=‘twdb-jobA’

TDWB Job RespositoryDomain
Manager

DMA

Job

JSDL:

1.
2.

3.

4.

Job:

name=twdb-jobA

Legend: Job TWS for z/OS current plan job definition JSDL Tivoli Dynamic Workload Broker job definition

Tivoli Dynamic Workload Broker job instance

604 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

2. When job WBJOB1 is ready to run:

Domain manager DMA:

– (1) Retrieves the WBJOB1 definition from the symphony file. The
information retrieved includes the name of the Tivoli Dynamic Workload
Broker job definition to be launched (tdwb-jobA in our case).

– (2) Sends a job launch request to the Tivoli Workload Scheduler agent,
which in turn transfers the job launch request to the Tivoli Dynamic
Workload Broker server.

The Tivoli Dynamic Workload Broker server:

– (3) Retrieves the JSDL definition with name tdwb-jobA.

– Allocates resources to the job, including a target computer. (Logical and
physical resource requirements for tdwb-jobA as well as current resource
usage data is used to find a best-fit resource.)

– (4) Submits a job request to its agent on the AIX machine selected.

– Waits for the execution result and when it arrives forwards it to the Tivoli
Workload Scheduler agent, which in turn forwards it to domain manager
DMA.

3. Domain manager DMA

– Updates its symphony file. Job stream and job status are updated to
reflect execution result.

– Propagates execution result to the Tivoli Workload Scheduler for z/OS
engine.

4. Tivoli Workload Scheduler for z/OS engine updates the current plan. Job
stream and job status are updated to reflect the execution result.

It should be obvious from this walk-through that monitoring and control of the
infrastructure components are essential. Monitoring and control can be
performed manually by people, automatically using software such as IBM Tivoli
Enterprise Portal, or both. What to describe and what to consider are therefore
very much dependent on the actual installation implementation and organization.

Some considerations on monitoring and control of the Tivoli Workload Scheduler
for z/OS end-to-end workstation will be given in the next subtopic, but for further
coverage of the subject we refer the reader to the product manauls.

 Chapter 11. Managing Tivoli Dynamic Workload Broker jobs using Tivoli Workload Scheduler for z/OS

Monitoring and control of workstation
When monitoring and controlling the Tivoli Workload Scheduler for z/OS
end-to-end workstation that represents the Tivoli Workload Scheduler agent
keep in mind the following considerations:

� The Tivoli Workload Scheduler for z/OS end-to-end workstation used for
scheduling Tivoli Dynamic Workload Broker jobs is an emulated Tivoli
Workload Scheduler standard agent.

– The workstation is emulated by the Tivoli Workload Scheduler agent,
which is a component of the Tivoli Dynamic Workload Broker. The Tivoli
Workload Scheduler agent is a WebSphere Enterprise Application and it
runs on the same WebSphere as the Tivoli Dynamic Workload Broker
TWS server component.

– The workstation is started by issuing a link command.

– The workstation is stopped by issuing an unlink command.

– The workstation commands start and stop are not supported.

� The Tivoli Workload Scheduler agent component is automatically started
when the broker server is started and an emulated Netman function begins
listening for requests from its hosting Tivoli Workload Scheduler domain
manager.

When you do a successful link and unlink of a Tivoli Workload Scheduler agent
workstation this is logged both in the Tivoli Workload Scheduler for z/OS
end-to-end logs and in the Tivoli Dynamic Workload Broker log.

Example 11-22 shows sample Tivoli Workload Scheduler for z/OS end-to-end
messages from our lab environment.

Example 11-22 TWS for z/OS end-to-end log messages resulting from link and unlink of workstation

Messages in TWS for z/OS Controller mlog when issuing Link command.
EQQWL50I COMMAND LINK SENT FOR TDWB
EQQWL10W workstation TDWB HAS BEEN SET TO LINKED STATUS TYPE SAGENT DOMAIN MASTERDM
EQQWL10W workstation TDWB HAS BEEN SET TO ACTIVE STATUS TYPE SAGENT DOMAIN MASTERDM

Messages in TWS for z/OS USS server TWSMERGE.log when issuing Link command.

Note: Starting and stopping the Tivoli Workload Scheduler agent workstation
does not follow the normal rules for a Tivoli Workload Scheduler standard
agent workstation. For the Tivoli Workload Scheduler agent workstation the
following applies:

� The link command both links and starts the workstation.
� The unlink command both stops and unlinks the workstation.

606 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

MAILMAN:AWSBCV018I ÆJ67175125/Operator command: LINK TDWB
MAILMAN:AWSBCV029I Attempting to link to TDWB.
MAILMAN:AWSBCV056I Mailman has tried to link to a workstation (TDWB) to which it is
already linked.
MAILMAN:AWSBCV104I Has linked to TDWB using TCP.
BATCHMAN:AWSBDY104I Received command MY:LINK for run number 32 for workstation TDWB
from workstation OPCMASTER.T
BATCHMAN:Workstation TDWB State is being changed: LINKED=TCP
BATCHMAN:AWSBHT033I Workstation TDWB is now active, scheduling is resuming.
TDWB:WRITER:AWSBCW028I Started by MAILMAN/8.3 from TDWB; workstation type: WNT
TDWB:WRITER:AWSBCW031I Handshake command_type StartMailbox
BATCHMAN:AWSBDY112I Received command MY:WRITER-UP for run number -1 for workstation
TDWB from workstation OPCMASTER.
BATCHMAN:Workstation TDWB State is being changed: WRITER
BATCHMAN:AWSBDY110I Received command MY:JOBMAN-UP for run number 32 from workstation
TDWB.
BATCHMAN:Workstation TDWB State is being changed: JOBMAN

Messages in TWS for z/OS Controler mlog when issuing Unlink command.
EQQWL50I COMMAND UNLINK SENT FOR TDWB
EQQWL10W workstation TDWB HAS BEEN SET TO UNLINKED STATUS TYPE SAGENT DOMAIN MASTERDM
EQQWL10W workstation TDWB HAS BEEN SET TO OFFLINE STATUS TYPE SAGENT DOMAIN MASTERDM

Messages in TWS for z/OS USS server TWSMERGE.log when issuing Unlink command.
MAILMAN:AWSBCV018I ÆJ67175125/Operator command: UNLINK TDWB
MAILMAN:+
MAILMAN:+ AWSBCV027I Unlinking from TDWB
MAILMAN:+
MAILMAN:AWSBCV028I Unlinked from TDWB, and will write to the PO box.
BATCHMAN:AWSBDY103I Received command MY:UNLINK for run number 32 for workstation
OPCMASTER
BATCHMAN:Workstation TDWB State is being changed: UNSETTING: LINKED=TCP
BATCHMAN:AWSBHT032I Workstation TDWB is now inactive, no jobs will be scheduled.

Example 11-23 shows sample Tivoli Dynamic Workload Broker messages from
our lab environment.

Example 11-23 Tivoli Dynamic Workload Broker log messages resulting from link and unlink of workstation

Messages in Tivoli Dynamic Workload Broker Systemout.log when issuing Link command.
TWSAgent I AWKTSA010I The START WRITER service request has been received by
Netman.
TWSAgent I AWKTSA017I Writer has been successfully started and it is listening
for messages.

 Chapter 11. Managing Tivoli Dynamic Workload Broker jobs using Tivoli Workload Scheduler for z/OS

TWSAgent I AWKTSA032I The TWS Agent CPU has been successfully linked to
[Ljava.lang.Object;@2ab7915e using port {1}.
TWSAgent I AWKTSA026I Jobman has been successfully started.
TWSAgent I AWKTSA021I Mailman has been successfully started and the uplink
connection is established.

Messages in Tivoli Dynamic Workload Broker Systemout.log when issuing Unlink command.
TWSAgent I AWKTSA028I Jobman has been successfully stopped.
TWSAgent I AWKTSA036I The TWS Agent CPU has been successfully unlinked.
TWSAgent I AWKTSA024I Mailman has been successfully stopped.

11.6.2 Monitoring and control of the workload being scheduled

Monitoring and control of the workload being scheduled are the focus of this
section, and more specifically we describe considerations that apply when Tivoli
Workload Scheduler for z/OS end-to-end is used to run Tivoli Dynamic Workload
Broker workloads.

In a Tivoli Workload Scheduler for z/OS end-to-end environment your business
applications and tasks are mapped by scheduling analysts into units of work
called jobs. Jobs are grouped into job streams along with times, priorities, and
other dependencies that determine the exact order of the jobs. Job streams also
contain business run schedules. Based on this information the Tivoli Workload
Scheduler for z/OS end-to-end regularly creates the current plan, which contains
the workload for both the mainframe and end-to-end scheduling network.

We describe the following areas:

� Monitoring workload progress, both from a human perspective and by
automatic job notification mechanisms

� Modifying job streams and jobs in the Tivoli Workload Scheduler for z/OS
current plan

� Job error handling

Monitoring workload progress
From a human perspective monitoring workload progress almost intuitively brings
the concept of state, or status, into focus.

Note: In this section we show user interface samples to illustrate the
look-and-feel of available user interfaces. Detailed step-by-step user interface
actions have been deliberately left out.

608 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Tivoli Workload Scheduler for z/OS end-to-end job status
Tivoli Workload Scheduler for z/OS end-to-end assigns a status code to every job
stream and every job in the current plan. An error code is also assigned for any
job that ends in error. Tivoli Workload Scheduler for z/OS end-to-end also
maintains an extended status code that provides additional information about the
status of a job. However, the extended status code is not always present.

You monitor (that is, visually display) the status of the job stream and jobs by
using the Tivoli Workload Scheduler for z/OS end-to-end user interfaces:

� Job Scheduling Console (JSC)
� Tivoli Workload Scheduler for z/OS ISPF panels
� Tivoli Dynamic Workload Console

We decided to show examples using JSC and ISPF panels.

The job status codes relevant for jobs submitted to the Tivoli Dynamic Workload
Broker are:

W The job is waiting for a predecessor to complete.

A Arriving. The job is ready for processing. No predecessors were defined.

R Ready for processing. All predecessors are complete.

* Ready. At least one predecessor is defined on a non reporting.
workstation. All predecessors are complete.

S Started.

C Complete.

E The job has ended in error.

D Deleted.

Tivoli Dynamic Workload Broker job status
The Tivoli Dynamic Workload Broker server assigns a job status to every job
instance.

In a native Tivoli Dynamic Workload Broker environment you monitor ()hat is,
visually display, the job status by using the Tivoli Dynamic Workload Broker user
interfaces:

� Tivoli Dynamic Workload Broker Web Console
� Tivoli Dynamic Workload Broker command-line interface

In an integrated environment you can also monitor Tivoli Dynamic Workload
Broker job status using the status code assigned by the Tivoli Workload
Scheduler for z/OS end-to-end to the corresponding job in the current plan. How
to map job status between the products is our next subtopic.

 Chapter 11. Managing Tivoli Dynamic Workload Broker jobs using Tivoli Workload Scheduler for z/OS

Status mapping
Table 11-5 shows how to map between:

� Tivoli Dynamic Workload Broker job status

� Tivoli Workload Scheduler for z/OS end-to-end job status code and extended
status code

� Tivoli Workload Scheduler Job Scheduling Console job status

Table 11-5 Status mapping between Tivoli Dynamic Workload Broker and TWS for z/OS end-to-end

Tivoli Dynamic Workload
Broker job status

Tivoli Workload Scheduler for
z/OS end-to-end job status
code and extended status
code

Tivoli Workload Scheduler Job
Scheduling Console job status

1)

Not applicable

W - Waiting Waiting

A - Arriving Ready

R - Ready Ready

* - Ready Ready

2)
E - Error

Error code is set to FAIL.

2)
Error

Error code is set to FAIL.

� Submitted
� Waiting for resources
� Waiting for reallocation
� Resource allocation received
� Submitted to agent

3)
S - Started

Extended status code is set to Q.

3)
Running

Status details: Added job to
TDWB job queue.

� Running S - Started

Extended status code is set to S.

Running

� Completed successfully C - Completed Successful

4)
� Run Failed

4)
E - Error

Error code is set to nnnn.

4)
Error

Error code is set to nnnn.

� Resource allocation failed
� Unable to start

E - Error

Error code is set to FAIL.

Error

Error code is set to FAIL.

610 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Notes:
1) Before the Tivoli Dynamic Workload Broker server has received a jobsubmit

request from the Tivoli Workload Scheduler agent there is no job instance and
hence there is no applicable Tivoli Dynamic Workload Broker job status.

2) Internal processing errors can occur in the Tivoli Workload Scheduler agent that
prevent it from processing an incoming job request from its hosting Tivoli
Workload Scheduler domain manager. In this case the job will fail with error
code=FAIL. An example is when the Tivoli Workload Scheduler agent fails
authentication itself to the Tivoli Dynamic Workload Broker server.

3) The extended status is S, which is a program defect.
4) The Tivoli Dynamic Workload Broker job status run failed is set when job

execution failed (that is, a Tivoli Dynamic Workload Broker agent has submitted
the job to an operating system but execution failed for some reason). The Tivoli
Workload Scheduler for z/OS end-to-end job status code is set to E- Error along
with a numerical error code.

Job status display using z/OS ISPF panels
Let us first see how Tivoli Workload Scheduler for z/OS ISPF panels show job
status for:

� Job stream occurrence WBJOBSTATUS1
� Jobs running on workstation TDWB

� Canceled E - Error

Error code is set to 0000.

Error

Error code is set to 0000.

� Cancel pending
� Cancel allocation

The status code will be set to:
� E - Error

with error code set to 0000
when the job reaches Canceled
state in IBM Tivoli Dynamic
Workload Broker.

The job status will be set to:
� E - Error

with error code set to 0000
when the job reaches Canceled
state in IBM Tivoli Dynamic
Workload Broker.

Tivoli Dynamic Workload
Broker job status

Tivoli Workload Scheduler for
z/OS end-to-end job status
code and extended status
code

Tivoli Workload Scheduler Job
Scheduling Console job status

 Chapter 11. Managing Tivoli Dynamic Workload Broker jobs using Tivoli Workload Scheduler for z/OS

We generated a display showing jobs for a single job stream occurrence in the
current plan. To achieve this we used filter criteria on Tivoli Workload Scheduler
for z/OS ISPF panel EQQSOPFP, as shown with bold text in Figure 11-35.

Figure 11-35 Entering job display criteria on TWS for z/OS ISPF panel EQQSOPFP

EQQSOPFP ------------------- SELECTING OPERATIONS -----------------------------
Command ===>

Specify selection criteria below and press ENTER to create an operation list.

JOBNAME => ________ workstation NAME => TDWB
APPLICATION ID => WBJOBSTATUS1____ OWNER ID => ________________
AUTHORITY GROUP => ________ PRIORITY => _
GROUP DEFINITION => ________________ STATUS => _________________
CLEAN UP TYPE => ____ CLEAN UP RESULT => __
OP. EXTENDED NAME => __
OP. SE NAME => ________________
Input arrival in format YY/MM/DD HH.MM
 FROM => 07/04/17 10.00
 TO => 07/04/17 10.00
Additional Options (Y N)
FAST PATH => N Valid only along with jobname
MANUALLY HELD => _
WAITING FOR SE => _ leave blank to select all
STARTED ON WAIT WS => _ leave blank to select all

612 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Figure 11-36 shows the resulting panel EQQSOP1L displaying job status
information in column S. There are four jobs in error status and one job in
complete status.

Figure 11-36 Job status display on TWS for z/OS ISPF panel EQQSOP1L

Job status display using Job Scheduling Console
Now let us see how the job status is displayed using the Job Scheduling Console
for:

� Job stream occurrence WBJOBSTATUS1
� Jobs running on workstation TDWB

EQQSOP1L -------------- BROWSING OPERATIONS (left part) ------ Row 1 to 5 of 5
Command ===> Scroll ===> CSR

Enter the GRAPH command above to view operations graphically or
scroll right or enter the row command S to select an operation for details.

Row Application id Operation Jobname S Input Deadline Latest Crit
cmd ws no. arrival start path
'''' WBJOBSTATUS1 TDWB 010 WBUNXRC0 C 17 10.00 17 18.00 17 17.59 N N
'''' WBJOBSTATUS1 TDWB 020 WBUNXRC8 E 17 10.00 17 18.00 17 17.59 N N
'''' WBJOBSTATUS1 TDWB 030 WBNOJSDL E 17 10.00 17 18.00 17 17.59 N N
'''' WBJOBSTATUS1 TDWB 040 WBUNXUSR E 17 10.00 17 18.00 17 17.59 N N
'''' WBJOBSTATUS1 TDWB 050 WBUNXCAN E 17 10.00 17 18.00 17 17.59 N N

 Chapter 11. Managing Tivoli Dynamic Workload Broker jobs using Tivoli Workload Scheduler for z/OS

First we generated a display showing jobs for a single job stream occurrence in
the current plan. To achieve this we created a Job Scheduling Console job
instance list with filter criteria, as shown in Figure 11-37.

Figure 11-37 Defining job display criteria on Job Scheduling Console job instance list

614 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Figure 11-38 shows the resulting JSC window displaying job status information in
the Status column. There are four jobs in error status and one job in successful
status.

Figure 11-38 Job status display using Job Scheduling Console

 Chapter 11. Managing Tivoli Dynamic Workload Broker jobs using Tivoli Workload Scheduler for z/OS

Job status display using Tivoli Dynamic Workload Broker
Now let us see how job status is displayed using the Tivoli Dynamic Workload
Broker Web Console. Figure 11-39 shows the job status for four job instances.

Figure 11-39 Job status display using Tivoli Dynamic Workload Broker Web Console

Let us take a close look at Tivoli Dynamic Workload Broker job instance
information in Figure 11-39 and compare this to the Tivoli Workload Scheduler
for z/OS end-to-end job information shown on the Job Schdeulig Console in
Figure 11-38 on page 615.

616 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Table 11-6 shows how information is related.

Table 11-6 Job Scheduling Console and Web Console job status

How did we correlate the jobs to each other? We used the Tivoli Dynamic
Workload Broker job alias. In our case the Tivoli Dynamic Workload Broker job
alias is in the format:

TDWB#WBJOBSTATUS1.J<jobnumber>_<jobname>...

The job number and job name of the job alias were used to identify the
corresponding job on the Job Scheduling Console.

Automatic notification about job conditions
Automatic notification about job conditions is a way to relieve operations analysts
from the burden of manually monitoring workload progress of perhaps hundreds
of thousands of jobs. The idea is to selectively create notifications only for job
conditions that inform of actual or possible impact on workload progress.

Automatic notification of job conditions can come from Tivoli Workload Scheduler
for z/OS and from the Tivoli Dynamic Workload Broker.

JSC job name JSC job status Web Console job
name

Web Console job
status

WBUNXRC0 Successful twsz-UNIX-script-RC0 Completed successfully

WBUNXRC8 Error twsz-UNIX-script-RC8 Run failed

WBNOJSDL Error

WBUNXUSR Error twsz-UNIX-script-userc
red-missing

Unable to start

WBUNXCAN Error twsz-UNIX-sleep-script Canceled

Note: Job WBNOJSDL in the Job Scheduling Console list has no
corresponding job in the Web Console job instance list. This is because we
tried to run Tivoli Dynamic Workload Broker job JSDL that did not exist in the
Tivoli Dynamic Workload Broker job respository. Hence, no Tivoli Dynamic
Workload Broker job instance could be created.

 Chapter 11. Managing Tivoli Dynamic Workload Broker jobs using Tivoli Workload Scheduler for z/OS

Tivoli Workload Scheduler for z/OS job notification
Tivoli Workload Scheduler for z/OS provides the following job notifications:

� Job long duration

The job long duration alert action is taken when a job in the current plan is
active for an unexpectedly long time.

� Job error

The job error alert action is taken when a job in the current plan is set to
ended-in-error status.

� Job late

The job late alert action is taken when a job in the current plan becomes late.
A job is considered late if it reaches its latest start time and does not have the
status started, complete, or deleted.

IBM Tivoli Workload Scheduler for z/OS controller can take several actions when
a job notification alert is generated. Available actions are:

� Write a message to the Tivoli Workload Scheduler for z/OS controller
message log.

� Write a write-to-operator (WTO) message to the z/OS system log.

� Send a generic alert to NetView®.

� Send a generic alert to IBM Tivoli Monitoring agent.

Using the Tivoli Monitoring agent, Tivoli Workload Scheduler for z/OS can
work with Tivoli Business Systems Manager and Tivoli Monitoring through the
Tivoli Enterprise Portal component to provide external monitoring of job
notifications.

Tivoli Dynamic Workload Broker job notification
Tivoli Dynamic Workload Broker job notifications are described in 4.6,
“Monitoring computers and jobs” on page 171.

Modifying job streams and jobs in current plan
Job streams and jobs that contains workloads destined for Tivoli Dynamic
Workload Broker can be managed in real time using the advanced capabilities of
Tivoli Workload Scheduler for z/OS end-to-end, thereby further delivering
integration benefits.

618 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Using Tivoli Workload Scheduler for z/OS end-to-end you can manage objects in
the current plan:

� Job streams

You can:

– View the properties.

– View successors and predecessors.

– Rerun a job stream (all jobs or selected jobs).

– Complete and delete the job stream.

– Add job streams ad hoc to the current plan (automatically resolving
predecessors and successors as needed).

� Jobs

You can:

– View the properties.

– View and manage successors and predecessors.

– Rerun, complete, and delete jobs.

– Manage job recovery.

– Browse the job log.

– Stop a running job.

� Tivoli Workload Scheduler workstation

You can:

– View the properties.

– Change the job limit.

– Link or unlink.

Managing objects in the current plan are documented in:

� IBM Tivoli Workload Scheduler for z/OS Managing the Workload, SC32-1263
� IBM Tivoli Workload Scheduler for z/OS Scheduling End-to-end, SC32-1732

We now describe considerations that apply when managing Tivoli Dynamic
Workload Broker jobs:

� Stopping a running job
� Job error handling

 Chapter 11. Managing Tivoli Dynamic Workload Broker jobs using Tivoli Workload Scheduler for z/OS

Stopping a running Tivoli Dynamic Workload Broker job
We define a running Tivoli Dynamic Workload Broker job as a job for which all of
the following statements are true:

� The corresponding Tivoli Workload Scheduler for z/OS end-to-end job is in
status S - Started.

� The job has been submitted to an operating system by a Tivoli Dynamic
Workload Broker agent.

� The job is currently executing.

You can stop (that is, cancel) job execution in several ways:

� Initiate a kill action from Tivoli Workload Scheduler for z/OS ISPF panels.

� Initiate a kill action from the Job Scheduling Console.

� Initiate a cancel action from the Tivoli Dynamic Workload Broker Web
Console.

� Initiate a cancel action using the Tivoli Dynamic Workload Broker CLI
command jobcancel.

� Cancel job execution on the computer where it is currently running.

Kill actions initiated from Tivoli Workload Scheduler for z/OS result in a job cancel
request being sent to the Tivoli Dynamic Workload Broker server.

Cancel actions initiated from the Tivoli Dynamic Workload Broker Web Console
or CLI result in a job cancel request being sent to the Tivoli Dynamic Workload
Broker server.

The Tivoli Dynamic Workload Broker server forwards an incoming job cancel
request to the Tivoli Dynamic Workload Broker agent on the computer were the
job is currently executing.

The Tivoli Dynamic Workload Broker agent asks the operating system to cancel
job execution. The Tivoli Dynamic Workload Broker agent captures the job
termination result and reports it back to its server for further handling.

Note: The following Tivoli Workload Scheduler for z/OS object actions do not
initiate any job level kill or cancel actions:

� Complete, rerun, or delete job stream.
� Complete, rerun, or delete job.
� Unlink workstation.

620 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Job error handling
Manual error handling of Tivoli Dynamic Workload Broker jobs submitted from
the Tivoli Workload Scheduler for z/OS end-to-end is managed using:

� Tivoli Workload Scheduler for z/OS ISPF panels
� Job Scheduling Console

Tivoli Workload Scheduler for z/OS end-to-end also delivers capabilities to
automate job error handling. This is called job recovery and is described in
11.5.5, “Job recovery and restart” on page 582.

Job error handling using Tivoli Workload Scheduler for z/OS ISPF panels should
preferrably be perfomed from the error list panel. Figure 11-40 shows an example
of this panel with four jobs in error status. The job error codes are shown in
column Errc.

Figure 11-40 Tivoli Workload Scheduler for z/OS ISPF job error list panel EQQMEP1L

EQQMEP1L ------ HANDLING OPERATIONS ENDED IN ERROR (left part) Row 1 to 4 of 4
 Command ===> Scroll ===> CSR

 Scroll right, enter the EXTEND command to get extended row command
 information, enter the HIST command to select operation history list or
 enter any of the row commands below:
 I,O,J,L,RC,FSR,FJR,FSC,RI,C,MH,MR,SJR or RER,ARC,WOC,CMP,MOD,DEL,RG,DG or CG

 LAYOUT ID ===> TWS_____ Change to switch layout id

 Cmd Application ws no. Jobname Operation text Errc
 ''' WBJOBSTATUS1 TDWB 20 WBUNXRC8 Unix script rc=8 0008
 ''' WBJOBSTATUS1 TDWB 30 WBNOJSDL JSDL job does not exist FAIL
 ''' WBJOBSTATUS1 TDWB 40 WBUNXUSR Wrong Unix user cred. FAIL
 ''' WBJOBSTATUS1 TDWB 50 WBUNXCAN Unix script canceled 0000

 Chapter 11. Managing Tivoli Dynamic Workload Broker jobs using Tivoli Workload Scheduler for z/OS

Job error handling can also be performed from the Job Scheduling Console.
Figure 11-41 shows an example of of a job list with four jobs in error status. The
job error codes are shown in column Error code.

Figure 11-41 Tivoli Workload Scheduler Job Scheduling Console job error list

Both Tivoli Workload Scheduler for z/OS error list panel EQQMEP1L and Job
Scheduling Console job lists can be tailored by the user. Tailoring includes
selecting columns and the column order to display.

Analysis and eventually recovery of Tivoli Workload Scheduler for z/OS
end-to-end jobs in error status can be both simple and complex:

� A non-zero numerical error code indicates that the Tivoli Dynamic Workload
Broker job execution took place, but was unsuccessful because a non-zero
return code was returned to the operating system.

� An error code of 0000 or FAIL needs to be investigated further in order to
identify error cause and recovery actions. Often the Tivoli Dynamic Workload
Broker job status must be determined.

Table 11-5 on page 610 shows how the different Tivoli Dynamic Workload
Broker job status values map to Tivoli Workload Scheduler for z/OS job status
codes and error codes.

11.7 Terminology

In this section the terminology used in this chapter is defined.

Note: In order to make the terminology used in this chapter we adopted a
system of terminology that may be a bit different than that used in the product
documentation.

622 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

11.7.1 Tivoli Workload Scheduler for z/OS end-to-end terminology

� IBM Tivoli Workload Scheduler suite

The suite of programs that includes Tivoli Workload Scheduler and Tivoli
Workload Scheduler. These programs are used together to make end-to-end
scheduling work.

� IBM Tivoli Workload Scheduler

The version of Tivoli Workload Scheduler that runs on UNIX, OS/400®, Linux,
and Windows operating systems. Sometimes called IBM Tivoli Workload
Scheduler Distributed.

� IBM Tivoli Workload Scheduler for z/OS

The version of Tivoli Workload Scheduler that runs on z/OS (as distinguished
from Tivoli Workload Scheduler by itself, without the for z/OS specification).

� Scheduling engine

A Tivoli Workload Scheduler engine or Tivoli Workload Scheduler for z/OS
engine.

� IBM Tivoli Workload Scheduler engine

The part of Tivoli Workload Scheduler that does actual scheduling work, as
distinguished from the other components that are related primarily to the user
interface (for example, the Tivoli Workload Scheduler Connector).

� IBM Tivoli Workload Scheduler for z/OS engine

The part of Tivoli Workload Scheduler for z/OS that does actual scheduling
work, as distinguished from the other components that are related primarily to
the user interface (for example, the Tivoli Workload Scheduler for z/OS
Connector). Essentially, the controller plus the server.

� IBM Tivoli Workload Scheduler for z/OS controller

This is the component that runs on the controlling z/OS system and that
contains the tasks that manage the long term plan, the current plan, and the
databases.

� IBM Tivoli Workload Scheduler for z/OS tracker

The tracker acts as a communication link between the system it runs on and
the controller.

� IBM Tivoli Workload Scheduler for z/OS server

The part of Tivoli Workload Scheduler for z/OS that acts as master domain
manager. It is based on the UNIX IBM Tivoli Workload Scheduler code and
runs in z/OS UNIX System Services (USS) on the mainframe.

 Chapter 11. Managing Tivoli Dynamic Workload Broker jobs using Tivoli Workload Scheduler for z/OS

� Job Scheduling Console

Job Scheduling Console (JSC), the common graphical user interface (GUI) to
both IBM Tivoli Workload Scheduler and IBM Tivoli Workload Scheduler for
z/OS scheduling engines.

� Tivoli Dynamic Workload Console

The Tivoli Dynamic Workload Console is Web-based user interface for Tivoli
Workload Scheduler and Tivoli Workload Scheduler for z/OS. It provides you
with a means of viewing and controlling scheduling activities in production on
both the Tivoli Workload Scheduler distributed and the Tivoli Workload
Scheduler for z/OS end-to-end environments.

� Master

The top level of the Tivoli Workload Scheduler for z/OS end-to-end scheduling
network. Also called the master domain manager because it is the domain
manager of the MASTERDM (top-level) domain.

� Domain manager

A fault-tolerant agent responsible for handling dependency resolution for
subordinate agents. Essentially, a fault-tolerant agent with a few extra
responsibilities.

� Backup domain manager

A fault-tolerant agent or domain manager capable of assuming the
responsibilities of its domain manager for automatic workload recovery.

� Fault-tolerant agent (FTA)

An agent that keeps its own local copy of the symphony file. In the event of a
loss of communication with the domain manager, the FTA continues operation
and is capable of resolving local dependencies and launching its jobs without
interruption. In Tivoli Workload Scheduler for z/OS end-to-end, FTAs are also
referred to as fault-tolerant workstations.

� Standard agent

Standard agents receive a light version of the symphony file containing only
domain, workstation, and user definitions. Standard agents connected to a
domain manager receive the request and information to run a job from the
domain manager. Standard agents connected directly to Tivoli Workload
Scheduler for z/OS server receive the request and information to run a job
from the Tivoli Workload Scheduler for z/OS controller.

� Extended agent

A logical entity hosted physically by fault-tolerant or standard agent that
enables you to launch and control jobs on other systems and applications,
such as PeopleSoft, Oracle Applications, SAP, and MVS™ JES2, and JES3.

624 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

� Long term plan (LTP)

A high-level plan for system activity that covers a period of at least one day,
and not more than four years.

� Current plan (CP)

A detailed plan or schedule of system activity that covers at least one minute,
and not more than 21 days. Typically a current plan covers 12 to 48 hours.

� Symphony file

In an end-to-end scheduling environment, the Tivoli Workload Scheduler for
z/OS engine, in its role as master domain manager of the distributed network,
creates the symphony file from the Tivoli Workload Scheduler for z/OS current
plan. The symphony file contains all of the job streams that are defined to run
on fault-tolerant workstations, standard agents, and extended agents.

� Workstation (WS)

A unit, place, or group that performs specific data processing functions. A
logical place where work occurs in an operations department. Tivoli Workload
Scheduler for z/OS requires that you define the following characteristic for
each workstation: the type of work it does (computer, printer, or general), the
quantity of work it can handle at any particular time, and the times it is active.
The activity that occurs at each workstation is called an operation. Activities
on computer type workstations are also called jobs.

� Fault-tolerant workstation

A Tivoli Workload Scheduler for z/OS end-to-end workstation used to
schedule jobs on a fault-tolerant agent in the distributed network.

11.7.2 Tivoli Dynamic Workload Broker terminology

The following terms are defined:

� Tivoli Dynamic Workload Broker

The Tivoli Dynamic Workload Broker program product.

� Tivoli Dynamic Workload Broker server

Performs the Tivoli Dynamic Workload Broker job management and resource
management activities.

� Tivoli Workload Scheduler agent

Transfers job requests received from a Tivoli Workload Scheduler for z/OS
end-to-end domain manager to the Tivoli Dynamic Workload Broker server. It
emulates the behavior of a Tivoli Workload Scheduler standard agent.

 Chapter 11. Managing Tivoli Dynamic Workload Broker jobs using Tivoli Workload Scheduler for z/OS

� Workload agent

Receives job submission requests from the Tivoli Dynamic Workload Broker
server job dispatcher and manages the running of Tivoli Dynamic Workload
Broker jobs from start to finish on the local system.

� Tivoli Dynamic Workload Broker job

A job definition containing all information and parameters necessary to run a
Tivoli Dynamic Workload Broker job. It is a text file in .JSDL format.

� Job Submission Description Language (JSDL) file

Synonym for a Tivoli Dynamic Workload Broker job.

� Job repository

A Tivoli Dynamic Workload Broker server data store containing Tivoli
Dynamic Workload Broker job definitions.

� Job Brokering Definition Console

A structured editing tool you use to create and modify Job Submission
Description Language (JSDL) files.

626 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Appendix A. Using Tivoli Dynamic
Workload Broker with
Enterprise Workload
Manager

This appendix describes how to configure Tivoli Dynamic Workload Broker and
Enterprise Workload Manager to be used together for efficient job dispatching
and scheduling. It reviews general configuration and interaction between the
products, including Tivoli Dynamic Workload Broker job definition for Enterprise
Workload Manager interaction, Enterprise Workload Manager classification,
Enterprise Workload Manager load balancing, resource management, and
monitoring of the work.

All information given in this book refers to Tivoli Dynamic Workload Broker
Version 1.1 and Enterprise Workload Manager Version 1.2.

A

Note: This appendix is based on a whitepaper written by Alan Bivens, IBM
USA, and Tullio Tancredi, IBM Italy.

© Copyright IBM Corp. 2007. All rights reserved. 627

IBM Enterprise Workload Manager

Enterprise Workload Manager is a robust performance management tool that
allows the administrator to monitor and manage work that runs within enterprise
environments. Enterprise Workload Manager has a variety of management
abilities in its repertoire including the following:

� Advising load balancers (This management action is the focus of this book.)
� Moving CPU resources across virtual servers
� Provisioning new servers to needy server tiers

Enterprise Workload Manager management domains consist of a collection of
Enterprise Workload Manager managed servers and a domain manager. The
domain manager is the central point of control for a domain because it
coordinates the activation of policies on the managed servers and the collection
of performance data. A managed server is a server whose work requests are
monitored by Enterprise Workload Manager. The managed server sends
performance data to the domain manager. The domain manager includes the
Enterprise Workload Manager user interface, referred to as the Enterprise
Workload Manager Control Center. See Figure A-1.

Figure A-1 Typical Enterprise Workload Manager environment

The Enterprise Workload Manager Managed Server gathers system statistics
from the underlying OS. If the applications running on the system are Application
Response Measurement (ARM) instrumented, the managed server will also

628 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

gather application statistics. The Tivoli Dynamic Workload Broker agent is ARM
instrumented to provide application information for Enterprise Workload Manager
to use when calculating weights for efficient job dispatching.

Enterprise Workload Manager and Tivoli Dynamic Workload Broker interact in
three different ways:

� Monitoring: The Tivoli Dynamic Workload Broker agent is ARM instrumented
to allow Enterprise Workload Manager to classify and closely monitor the
work running on the agent systems.

� Advanced load balancing/job dispatching: Tivoli Dynamic Workload Broker
communicates with Enterprise Workload Manager through the
Server/Application State Protocol (SASP) to get weights that indicate the best
distribution of Tivoli Dynamic Workload Broker agents to which to route
incoming jobs.

� Enterprise Workload Manager Autonomic Management: If on a supported
autonomic management platform, Enterprise Workload Manager will use
other resource allocation methods to help achieve the administratively
configured goals of the Tivoli Dynamic Workload Broker jobs. See “Enterprise
Workload Manager resource allocation for meeting job goals” on page 656.

If you are unfamiliar with Enterprise Workload Manager, we suggest the following
sources for more information

� IBM Enterprise Workload Manager, SG24-6350

� Enterprise Workload Manager Infocenter:

http://publib.boulder.ibm.com/infocenter/eserver/v1r2/index.jsp

Planning for Tivoli Dynamic Workload Broker/Enterprise
Workload Manager interaction

When planning for the interaction of Tivoli Dynamic Workload Broker and
Enterprise Workload Manager, one must keep in mind the supported platforms of
each product and the communication between them to ensure that the
environment is supported by both products.

Platform support

The Tivoli Dynamic Workload Broker Server is not a job-processing entity. Thus,
it is not ARM instrumented and does not need to be on a Enterprise Workload
Manager monitored machine. The Agent Manager is also not a job-processing

 Appendix A. Using Tivoli Dynamic Workload Broker with Enterprise Workload Manager 629

http://publib.boulder.ibm.com/infocenter/eserver/v1r2/index.jsp

entity and need not be on an Enterprise Workload Manager monitored machine.
The Tivoli Dynamic Workload Broker agent is ARM instrumented and processes
the Tivoli Dynamic Workload Broker jobs. Therefore, it should be on a machine
monitored with an Enterprise Workload Manager Managed Server. Because the
Tivoli Dynamic Workload Broker agent will also be a part of the Enterprise
Workload Manager Load Balancing algorithm, it should be on a machine with an
OS with Enterprise Workload Manager Managed Server load balancing support.
Given these requirements, it is important that the Tivoli Dynamic Workload
Broker agent and Enterprise Workload Manager Managed Server be on the
systems supported by the appropriate components of both products. A matrix of
this cross-product support (Enterprise Workload Manager Managed Server
load-balancing support and Tivoli Dynamic Workload Broker agent support) is in
Table A-1.

Table A-1 Matrix of cross-product support

Table A-1 was created from the supported OS list of Tivoli Dynamic Workload
Broker Version 1.1 and EWLM Release V1R2. Consult appropriate
documentation to determine supported operating systems for future releases of
either product.

Communication between products

The Tivoli Dynamic Workload Broker server connects to the Enterprise Workload
Manager Domain Manager to receive SASP load balancing recommendations.
This is a standard TCP connection (typically on port 3860) for binary
communication. If the Tivoli Dynamic Workload Broker server is in a less secure
zone than the Domain Manager, special provisions would need to be made to

IBM
AIX
5L™
v5.2

IBM
AIX
5D
v5.3

SLES
8

SLES
9

RHEL
3.0
and
4.0

Windows
Server
2000
Standard
or
Enterprise
Edition

Windows
Server
2003
Standard
or
Enterprise
Edition

Windows
Server
2003
Standard
AMD64
/EM64T

HP-UX
11iV1
and
Solaris
™ 9

TDWB
Agent

X X X X X X X X

EWLM
MS

X X X X X X

TDWB
and
EWLM

X X X X X

630 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

ensure that the Tivoli Dynamic Workload Broker connection can go through the
firewall to reach the Domain Manager.

Enterprise Workload Manager load balancing
recommendations in Tivoli Dynamic Workload Broker

In this document we provide a scenario on Tivoli Dynamic Workload Broker's use
of Enterprise Workload Manager Load Balancing weights for efficient job
dispatching. An example environment involving this interaction can be found in
the Figure A-2.

Figure A-2 Tivoli Dynamic Workload Broker using Enterprise Workload Manager Load
Balancing weights

In Figure A-2, the flow of Tivoli Dynamic Workload Broker jobs is illustrated in the
bold orange arrows. Enterprise Workload Manager's communication between its
managed servers and its domain manager is shown in blue. The long-lived SASP
connection between the Tivoli Dynamic Workload Broker Server and the
Enterprise Workload Manager Domain Manager is shown in green. During the
connection illustrated by the green line, the Tivoli Dynamic Workload Broker
server registers the Tivoli Dynamic Workload Broker agents as group members
with the Enterprise Workload Manager Domain Manager. The Tivoli Dynamic

 Appendix A. Using Tivoli Dynamic Workload Broker with Enterprise Workload Manager 631

Workload Broker Server then receives weight updates from the Domain Manager
every 30 seconds. These weight updates are immediately applied and affect the
manner in which Tivoli Dynamic Workload Broker dispatches jobs until the next
weight update is received.

The following steps must be followed to start the interaction:

1. Enable Enterprise Workload Manager Load Balancing. See “Turning on
Enterprise Workload Manager load balancing” on page 633.

2. Install the Enterprise Workload Manager Plug-in at Tivoli Dynamic Workload
Broker install time. See “Enabling ARM on the Tivoli Dynamic Workload
Broker agent” on page 636.

3. Set Enterprise Workload Manager as the optimization policy in the Tivoli
Dynamic Workload Broker job definition. See “Job definitions” on page 636.

We highly recommend the remaining steps for the most efficient job dispatching
interaction:

1. Enable ARM on the Tivoli Dynamic Workload Broker agent. See “Enabling
ARM on the Tivoli Dynamic Workload Broker agent” on page 636.

2. Define Enterprise Workload Manager classification and service goal criteria.
See “Enterprise Workload Manager classification of Tivoli Dynamic Workload
Broker jobs” on page 637.

Starting the interaction

Now let us look at starting the interaction.

Note: Enterprise Workload Manager and Tivoli Dynamic Workload Broker
integration troubleshooting is covered in 10.4, “Troubleshooting the integration
with Enterprise Workload Manager” on page 512.

632 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Turning on Enterprise Workload Manager load balancing

Enterprise Workload Manager's process of generating load balancing weights
that may be used for the efficient dispatching of jobs must be turned on and
configured prior to use. This can be done using the Configuration Wizard at
Enterprise Workload Manager install time, or through the use of the changeDM
command after Enterprise Workload Manager has already been installed. The
typical configuration uses the following parameters:

-lbp (load balancing port) 3860
-ma (management address)* 0.0.0.0

*A value of 0.0.0.0 is used for the management address to permit the domain
manager to accept connections to the load balancing port on any valid IP
address (this is important when using machines with more than one network
interface).

Enabling Tivoli Dynamic Workload Broker to receive Enterprise
Workload Manager Load Balancing weights

Next you have to enable Tivoli Dynamic Workload Broker to accept the load
balancing weights from EWLM during the Tivoli Dynamic Workload Broker
installation process.

Enterprise Workload Manager enablement is a Tivoli Dynamic Workload Broker
extension that must be installed with the Tivoli Dynamic Workload Broker Server.
When installed, the Enterprise Workload Manager plug-in for Tivoli Dynamic
Workload Broker will be integrated into the server, registering the Tivoli Dynamic
Workload Broker agents as load balancing group members in Enterprise
Workload Manager and receiving new weights every 30 seconds.

 Appendix A. Using Tivoli Dynamic Workload Broker with Enterprise Workload Manager 633

As shown in Figure A-3, the administrator simply selects EWLM enablement
from the feature list when installing Tivoli Dynamic Workload Broker.

Figure A-3 Tivoli Dynamic Workload Broker EWLM enablement

634 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Once EWLM enablement is selected, the EWLM enablement configuration panel
appears, allowing the administrator to tell Tivoli Dynamic Workload Broker how to
connect to the EWLM Domain Manager. See Figure A-4.

Figure A-4 Connections to Enterprise Workload Manager

The following fields must be completed:

� EWLM Domain Manager Name: This is the unique identifier that the Tivoli
Dynamic Workload Broker server will use to identify itself with the Enterprise
Workload Manager Domain Manager. Care should be taken to ensure that
this name will not be used by any other products connecting to EWLM for
load-balancing weights.

� EWLM Domain Manager Address: This is the IP address or resolvable host
name of the Enterprise Workload Manage Domain Manager. The value used
here should be the same value used for the -ma parameter of the Enterprise
Workload Manage installation (unless 0.0.0.0 was used for the -ma
parameter).

� EWLM Domain Manager Port (LBP): This is the SASP port for the EWLM
Domain Manager. The value used here should be the same value used in the
-lbp parameter during Enterprise Workload Manager configuration.

� EWLM weight scope: This value should always be set to Application.

� EWLM refresh interval: This is the interval that determines how often the
Tivoli Dynamic Workload Broker Server will try to update Domain Manager
group settings (if needed). The default value is 90 seconds.

 Appendix A. Using Tivoli Dynamic Workload Broker with Enterprise Workload Manager 635

Job definitions
In order to make Tivoli Dynamic Workload Broker dispatch jobs using the weights
provided by the Enterprise Workload Manager, it is necessary to define EWLM
as the optimization policy in the job definition ,as shown in Example A-1.

Example A-1 Defining EWLM as the optimization policy

<jsdl:optimization name="JPT_EWLM">
<jsdl:ewlm/>

</jsdl:optimization>

Enabling ARM on the Tivoli Dynamic Workload Broker
agent

Enabling Application Response Measurement on the Tivoli Dynamic Workload
Broker agent requires the following two steps:

1. Set the arm.enabled variable on the Job Execution Agent.

Set arm.enabled=true in the JobExecutionAgent.properties file.

The JobExecutionAgent.properties file can be found at the following path:

<ITDWB_Agent_InstallDir>\ep\runtime\agent\subagents
\JobExecutionAgent\

2. Set the ARM native library path correctly.

The Tivoli Dynamic Workload Broker agent exploits IBM Java ARM
implementation, which needs a native ARM library. Table A-2 describes the
native library name and location for the collectively supported environments
shown in “Platform support” on page 629.

Table A-2 Native library names and locations

Operating system Library name Library path

IBM AIX 32 bit libewljarm4.a /usr/lib/libewljarm4.a

IBM AIX 64 bit libewljarm4_64.a /usr/lib/libewljarm4_64.a

Microsoft Windows ewljarm4.dll %VE%\EWLM\class\ms\ewljarm4.so

SLES 9 libewljarm4.so /usr/lib/libewljarm4.a

636 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

In order for Tivoli Dynamic Workload Broker to find this library, the native
library path must be edited to include the directory of the appropriate library
listed above.

– For AIX: The LD_LIBRARY_PATH environment is used to define the native
library path (that is, LD_LIBRARY_PATH=/usr/lib).

– For Windows: The directory containing the JNI™ library should be defined
by the PATH environment variable (that is,
PATH=%PATH%;<ewlm_root>\ms).

– For SLES 9: The directory containing the JNI library should be defined by
the PATH environment variable (that is, PATH=/usr/lib).

If the IBM JNI native library could not be found, the Tivoli Dynamic
Workload Broker agent will be not ARM instrumented. More information
can be found in the appropriate ARM-related documentation from the
Enterprise Workload Manager InfoCenter at:

http://publib.boulder.ibm.com/infocenter/eserver/v1r2/index.jsp

Enterprise Workload Manager classification of Tivoli
Dynamic Workload Broker jobs

Enterprise Workload Manager will report unclassified Tivoli Dynamic Workload
Broker work without any configuration from the administrator. However,
Enterprise Workload Manager classifies work in the enterprise environment to
understand management importance, identify work for goal setting, and to
provide more detailed reporting. In order to classify work being done in different
applications, Enterprise Workload Manager must first understand the information
each instrumented application will expose for classification. This is provided in an
Application filter xml file (named TDWB Agent.xml) currently available from
Enterprise Workload Manager or Tivoli Dynamic Workload Broker product teams.

 Appendix A. Using Tivoli Dynamic Workload Broker with Enterprise Workload Manager 637

http://publib.boulder.ibm.com/infocenter/eserver/v1r2/index.jsp

This file must be imported into the Enterprise Workload Manager Control Center
by using the Import button on the Applications panel (the Applications panel is
reached by using the Applications link under Set up). See Figure A-5.

Figure A-5 Importing TDWB_Agent.xml

Import the file named TDWB Agent.xml, as shown in Figure A-6. Tivoli Dynamic
Workload Broker agent can be found at the following path in the Tivoli Dynamic
Workload Broker Server directory space:

<server_installation_directory>/EWLM/samples

Figure A-6 TDWB_Agent.xml path

After the Tivoli Dynamic Workload Broker application file has been imported, you
will then see it in the list of applications. This step will also allow the Tivoli

638 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Dynamic Workload Broker agent to be used for classifying work in the Enterprise
Workload Manager policy.

Create the Enterprise Workload Manager policy

There is extensive documentation on the general creation of Enterprise
Workload Manager policies. See the Enterprise Workload Manager
documentation at:

http://publib.boulder.ibm.com/infocenter/eserver/v1r1/en_US/index.htm?info
/ewlminfo/kickoff.htm

Therefore, we only cover the parts pertaining to the Tivoli Dynamic Workload
Broker interaction. Before defining Tivoli Dynamic Workload Broker classification
criteria in the Enterprise Workload Manager policy for work in the current
environment, the application should also be added to the policy as one of the
applications that can classify work for this policy. This is done by using the Add
button in the Applications panel of the policy creation screens. (The panel can be
reached by selecting the Domain Policies link under Set up, and then creating a
new or editing an existing Domain Policy). See Figure A-7.

Figure A-7 Adding an application that can classify work

 Appendix A. Using Tivoli Dynamic Workload Broker with Enterprise Workload Manager 639

http://publib.boulder.ibm.com/infocenter/eserver/v1r1/en_US/index.htm?info/ewlminfo/kickoff.htm

Select the Tivoli Dynamic Workload Broker agent application to add from the
drop-down menu, and then click OK, as shown in Figure A-8.

Figure A-8 Drop-down menu shows application to add

Now that the Tivoli Dynamic Workload Broker agent application has been added
to the policy, you will be able to select it as one of the applications used to
classify work when creating Enterprise Workload Manager service classes and
transaction classes.

Create Enterprise Workload Manager service classes
Much of the remainder of this document focuses on how to classify the Tivoli
Dynamic Workload Broker work into Enterprise Workload Manager transaction
classes. However, each transaction class must be in a Enterprise Workload
Manager service class in order to be actively managed by Enterprise Workload
Manager. The service classes must exist prior to the creation of the transaction
classes. The service classes for Tivoli Dynamic Workload Broker work are no
different from any other service classes defined in Enterprise Workload Manager
about the creation of Enterprise Workload Manager service classes.

While Enterprise Workload Manager permits a variety of goal types to be used in
its service classes, some of the most popular goal types for transaction classes
are response time oriented goals. These goals can be very effective for short
transactions or for those that must be executed in a particular time frame.
However, administrators may find that velocity goals specifying the comparative

640 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

fraction of resources for the service class may be more appropriate for longer
running transactions.

Create Enterprise Workload Manager transaction classes
Once the TDWB Agent application has been added and service classes have
been created, transaction classes can now be created. The Transaction Class
creation panel is shown in Figure A-9. Note that the TDWB application is selected
from the drop-down menu and Enterprise Workload Manager has already created
a default transaction class. The New button should be used to create new
transaction classes with TDWB classification criteria.

Figure A-9 Transaction class creation panel

 Appendix A. Using Tivoli Dynamic Workload Broker with Enterprise Workload Manager 641

After selecting the New button, the New Transaction Class panel will be
displayed, giving the administrator the ability to specify the transaction class
name, the position of classification, and the associated service class. To begin
setting the classification rules, the New button under Rules must be selected.
See Figure A-10.

Figure A-10 Start setting classification rules

Creating rules for the Tivoli Dynamic Workload Broker/Enterprise Workload
Manager interaction is covered in detail in “Create Enterprise Workload Manager
transactions classified by Tivoli Dynamic Workload Broker application name” on
page 644; “Create Enterprise Workload Manager transactions classified by job
name” on page 646; and “Create Enterprise Workload Manager transactions by
categories” on page 650.

642 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Tivoli Dynamic Workload Broker/Enterprise Workload Manager joint
classification criteria

Classification of the Tivoli Dynamic Workload Broker work can be done in several
ways. Table A-3 briefly describes the current criteria that may be used for
classification of Tivoli Dynamic Workload Broker work (each will be explained in
detail in later subsections).

Table A-3 Criteria for classification of Tivoli Dynamic Workload Broker work

Note that the Category classification criteria is named Category1, Category2,
and Category3 in Enterprise Workload Manager, but has no number when first
described in the Tivoli Dynamic Workload Broker job definition. When using
categories in the Tivoli Dynamic Workload Broker job definition, the first Tivoli
Dynamic Workload Broker category defined is Enterprise Workload Manager's
Category1, the second Tivoli Dynamic Workload Broker Category is Enterprise
Workload Manager's Category2, and so on. This translation between products is
done automatically.

It is not necessary to make Enterprise Workload Manager transaction classes
using every way of classifying Tivoli Dynamic Workload Broker work. The three
different classification methods are present to provide maximum flexibility to the
administrator.

� One could create a silver transaction class, which is a combination of any of
these three, for example, all work executable work (EWLM:Transaction name
= executable) with job name of "silver" (JobName = "silver").

� One could create a silver transaction class that is simply based on one of the
criteria, for example, all work with job name of "silver" (JobName = "silver").

EWLM
classification
criteria name

TDWB job definition criteria name Valid TDWB values

Work type EWLM:Transaction
name

<jsdl:application name = "…"> � "executable
� "j2ee
� "<any new pluggable

application type>

Job name JobName <jsdl:jobDefinition name = "…"> <user entered string value>

Categories
*order
dependent

� Category1
� Category2
� Category3

� <jsdl:category>…</jsdl:category>
� "<jsdl:category>…</jsdl:category>
� "<jsdl:category>…</jsdl:category>

<user entered string values>

 Appendix A. Using Tivoli Dynamic Workload Broker with Enterprise Workload Manager 643

Create Enterprise Workload Manager transactions classified by Tivoli
Dynamic Workload Broker application name

Tivoli Dynamic Workload Broker allows its users to create different types of jobs
to be executed by the Tivoli Dynamic Workload Broker agents. The two types
currently supported are:

� Executable
� j2ee

If the user would like to add new job types, he may create a pluggable bundle for
Tivoli Dynamic Workload Broker and specify this job type in the Job Definition.
The type of job must be provided as a name attribute of the application element
in the Job Definition file. See Figure A-11.

Figure A-11 Tivoli Dynamic Workload Broker application name

644 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Enterprise Workload Manager recognizes this Tivoli Dynamic Workload Broker
application name as a transaction type. To create an Enterprise Workload
Manager rule using the Tivoli Dynamic Workload Broker application name, the
administrator needs to select EWLM:Transaction name to be in the left side of
the rule, the "=" for the operator, and enter the appropriate Tivoli Dynamic
Workload Broker application name value for the right side of the rule equation.
Figure A-12 shows a rule defined using an EWLM Transaction name equal to
executable. (See other possible Tivoli Dynamic Workload Broker application
name values in Table A-3 on page 643.)

Figure A-12 Creating a rule using EWLM transaction name and Tivoli Dynamic Workload Broker application
name

 Appendix A. Using Tivoli Dynamic Workload Broker with Enterprise Workload Manager 645

The new rule will be displayed in the final panel for the Transaction Class
definition, as shown in Figure A-13.

Figure A-13 Displaying new transaction name rule in transaction class panel

Create Enterprise Workload Manager transactions classified by job
name

Classifying using a Tivoli Dynamic Workload Broker job name is similar to
creating a transaction class using the Tivoli Dynamic Workload Broker
application name attribute (described in “Create Enterprise Workload Manager
transactions classified by Tivoli Dynamic Workload Broker application name” on
page 644). First, the job name should be configured in the Tivoli Dynamic

646 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Workload Broker Job Definition. In Figure A-15, the job name of DBCleanUp has
been configured.

Figure A-14 Tivoli Dynamic Workload Broker job name

 Appendix A. Using Tivoli Dynamic Workload Broker with Enterprise Workload Manager 647

To create an Enterprise Workload Manager rule using the Tivoli Dynamic
Workload Broker job name, the administrator needs to select Job Name to be in
the left side of the rule, the "=" for the operator, and enter the configured Tivoli
Dynamic Workload Broker Job Name for the right side of the rule equation. (In
the example below, the job name value is DBCleanUp.) See Figure A-15.

Figure A-15 Creating a rule using job name

648 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

The resulting transaction class and newly created rule are then shown in
Figure A-16.

Figure A-16 Displaying new job name rule in transaction class panel

 Appendix A. Using Tivoli Dynamic Workload Broker with Enterprise Workload Manager 649

Create Enterprise Workload Manager transactions by categories

In addition to Tivoli Dynamic Workload Broker application name and job name,
Tivoli Dynamic Workload Broker permits administrators to classify jobs using the
category attribute in the job definition. It is possible to define up to three different
categories for each job. Figure A-17 shows the definition of a job belonging to
two different categories:

� It is a Financial job.
� It is a Critical job.

Figure A-17 Tivoli Dynamic Workload Broker categories

To create an Enterprise Workload Manager rule using Tivoli Dynamic Workload
Broker categories, the administrator needs to select the appropriate Enterprise
Workload Manager category for the left side of the rule equation. If multiple Tivoli
Dynamic Workload Broker categories are used, rules combining the appropriate
Enterprise Workload Manager categories can be created. In the example below,
Category1 was first selected with a value of Financial on the right side of the rule
equation. The logical AND operator is then dragged over to the end of the rule
equation to create the opportunity for a second, joint rule. In the second rule,

650 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Category2 was selected to be in the left side of the rule and the value of Critical
is used in the right side of the rule. See Figure A-18.

Figure A-18 Creating a rule using multiple Tivoli Dynamic Workload Broker categories

 Appendix A. Using Tivoli Dynamic Workload Broker with Enterprise Workload Manager 651

The resulting transaction class is then displayed, as shown in Figure A-19.

Figure A-19 Displaying new multiple category rule in transaction class panel

652 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Confirming interaction from Enterprise Workload
Manager Control Center

Enterprise Workload Manager's Control Center displays a list of all load
balancers and schedulers that connect to the Domain Manager through SASP. To
see the current state of the Tivoli Dynamic Workload Broker connection to
Enterprise Workload Manager, simply go to the Load Balancing Panel of the
Enterprise Workload Manager Control Center. See Figure A-20.

Figure A-20 Enterprise Workload Manager Control Center load balancing panel

Find the Tivoli Dynamic Workload Broker Server in the list identified by its IP
address and the load balancing identifier that is the value used for Enterprise
Workload Manager Domain Manager Name when installing the Enterprise

 Appendix A. Using Tivoli Dynamic Workload Broker with Enterprise Workload Manager 653

Workload Manager plug-in during the Tivoli Dynamic Workload Broker install. (In
this case it was Tivoli Dynamic Workload Broker_Enterprise Workload Manager.)
Select the Tivoli Dynamic Workload Broker Server and the Details action to
get to the Load Balancer Details panel of the Tivoli Dynamic Workload Broker
Server. The Load Balancer Details panel displays all of the groups and group
members registered by the Tivoli Dynamic Workload Broker Server. The current
state and weight of each group member is also included in the report. An
example is provided in Figure A-21.

Figure A-21 Load balancer details

Application level load balancing

Enterprise Workload Manager's load balancing algorithm relies on ARM
instrumentation to get application information to use when generating load
balancing weights (called application level load balancing). If any member in the
registered group has not reported ARM statistics, only system statistics will be
used when computing weights for the entire group (called system level load
balancing). While system load balancing weights are still effective, factors such

654 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

as application-level failures cannot be factored into the calculation unless the
group is at the application load balancing level.

An administrator can determine the load balancing level of each group in the
Enterprise Workload Manager Control Center's load balancing panel by looking
at the Group Load Balancer Type field of the group. If the Group Load Balancer
Type has a value of System, the following actions can be taken to change it to
Application.

1. Make certain that Application was chosen for the Weight Scope when
installing Tivoli Dynamic Workload Broker and that ARM is enabled on the
TDWB Agent (see “Enabling ARM on the Tivoli Dynamic Workload Broker
agent” on page 636).

2. Forcefully send a transaction to each member in the group to ensure that the
corresponding Enterprise Workload Manager Managed Servers have
reported ARM statistics to the Domain Manager. See Figure A-22.

Figure A-22 Application level load balancing

 Appendix A. Using Tivoli Dynamic Workload Broker with Enterprise Workload Manager 655

Enterprise Workload Manager resource allocation for
meeting job goals

Enterprise Workload Manager possesses several resource management
capabilities, including Logical Partition Management and Provisioning. Once
work is classified into Enterprise Workload Manager Goals (see “Enterprise
Workload Manager classification of Tivoli Dynamic Workload Broker jobs” on
page 637), each of the resource management capabilities may be activated to
help Tivoli Dynamic Workload Broker work meet its goals. Resource
management capabilities are different for each platform, so appropriate
Enterprise Workload Manager documentation (based on the platform) should be
consulted if resource management is desired. Future versions of Enterprise
Workload Manager may have additional resource management capabilities that
can also be employed to meet administratively.

656 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Appendix B. Default ports used by Tivoli
Dynamic Workload Broker

This appendix contains a list of default ports used by Tivoli Dynamic Workload
Broker components. We list the default ports used by:

� Tivoli Dynamic Workload Broker server
� DB2 server used by Tivoli Dynamic Workload Broker server
� Integrated Solutions Console
� WebSphere Application Server hosting the Integrated Solutions Console
� Common Agent hosting the Tivoli Dynamic Workload Broker agent

B

© Copyright IBM Corp. 2007. All rights reserved. 657

Ports used by Tivoli Dynamic Workload Broker server

In this section we provide tables listing the ports used by Tivoli Dynamic
Workload Broker server.

Table B-1 lists the ports on server used for client Web services calls.

Table B-1 Ports on server used for client Web services calls

Table B-2 lists the ports used by the Tivoli Dynamic Workload Broker server
when integrated with other products.

Table B-2 Ports on server used for communication with integrated applications

Ports used by Agent Manager

In this section we list the ports used by Agent Manager. Agent Manager is the
server side of Common Agent Services. Agent Manager can be installed either
on the same machine as the Tivoli Dynamic Workload Broker server or on
another machine.

Port name/description Default port number

Unsecure communication (HTTP) with
clients via Web services

9550

Secure communication (HTTPS) with
clients via Web services

9551

Port name/description Default port number

Tivoli Workload Scheduler (TWS) Agent
port

31111

Enterprise Workload Manager (EWLM)
domain manager port

3860

IBM Change and Configuration
Management Database (CCMDB) server
port

9530

IBM Tivoli Provisioning Manager (TPM)
Server port

8777

658 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Table B-3 lists the ports used by Agent Manager.

Table B-3 Ports used by Common Agent Services - server side

Ports used by DB2 server

In this section we provide a table listing the ports used by a DB2 server used for
communication with Tivoli Dynamic Workload Broker server.

Table B-4 Ports used DB2 server

Ports used by Integrated Solutions Console

In this section we provide tables listing the ports used by the Integrated Solutions
Console.

Port name/description Default port number

Agent Manager Registration Port.
This port uses server-side authentication.

9511

Agent Manager Secure Port.
The port number for secure
communications with client authentication
with mutual authentication.

9512

Agent Manager Public Port.
The port number for public
communication, including the alternate
port for the agent recovery service.

9513

Port name/description Default port number

DB2 JDBC listening port 50000

 Appendix B. Default ports used by Tivoli Dynamic Workload Broker 659

Ports used by Integrated Solutions Console

Table B-5 lists the ports used by the Integrated Solutions Console, which is the
client of the Tivoli Dynamic Workload Broker server.

Table B-5 Ports used by Integrated Solutions Console (ISC)

Ports used by WebSphere Application Server hosting the Integrated
Solutions Console

Table B-6 lists the ports used by the WebSphere Application Server hosting the
Integrated Solutions Console.

Table B-6 Ports used by WebSphere Application server hosting ISC

Port name/description Default port number

Integrated Solutions Console HTTP port 8421

Integrated Solutions Console HTTPS port 8422

Integrated Solutions Console Bootstrap
RMI port

8424

Integrated Solutions Console SOAP port 8425

Integrated Solutions Console Admin
HTTP port

8431

Integrated Solutions Console Admin
HTTPS port

8432

Integrated Solutions Console SAS port 8439

Integrated Solutions Console CSlv2
server authentication port

8440

Integrated Solutions Console CSlv2
mutual authentication port

8441

Infocenter Help port 8423

Port name/description Default port number

WebSphere Application Server HTTP port 8426

WebSphere Application Server HTTPS
port

8427

660 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Ports used by Common Agent

In this section we provide tables listing the ports used by Common Agent.
Common Agent is the agent side of the Common Agent Services. Each Tivoli
Dynamic Workload Broker agent is hosted by the Common Agent.

Table B-7 lists the ports used by Common Agent.

Table B-7 Ports used by Integrated Solutions Console (ISC)

WebSphere Application Server Bootstrap
RMI port

8428

WebSphere Application Server SOAP port 8429

WebSphere Application Server Admin
HTTP port

8433

WebSphere Application Server Admin
HTTPS port

8434

WebSphere Application Server ORB port 8435

WebSphere Application Server SAS port 8436

WebSphere Application Server CSlv2
server authentication port

8437

WebSphere Application Server CSlv2
mutual authentication port

8438

Port name/description Default port number

Port name/description Default port number

Agent Port.
The port number that the common agent
uses for communication.

9510

Nonstop service port 1.
The port number used by the non-stop
server to listen for the common agent
process.

9514

Nonstop service port 2.
The port number used by the non-stop
server to listen for the common agent
process.

9515

 Appendix B. Default ports used by Tivoli Dynamic Workload Broker 661

HTTP transport port.
The port number used for HTTP transport.

80

HTTPS transport port.
The port number used for HTTPS
transport.

443

Port name/description Default port number

662 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

acronyms
ARM Application Response
Measurement

CAS Common Agent Services

CCMDB Change and Configuration
Management Database

CIT Common Inventory
Technology

CLI Command-line interface

CMP Cluster multi-processing

COM Common Object Model

CORBA Common Object Request
Broker Architecture

CP Current Plan

DVIPA Dynamic Virtual IP Address

E2E End-to-end

EJB Enterprise Java Beans

EWLM Enterprise Workload Manager

FTA Fault tolerant agent

GUI Graphical user interface

HA High availability

HAGS High Availability Group
Services

HATS High Availability Topology
Services

IBM International Business
Machines Corporation

IDEs Integrated Development
Environments

ISC Integrated Solutions Console

ISPF Interactive System
Productivity Facility

ITSO International Technical
Support Organization

J2EE Java 2 Enterprise Edition

Abbreviations and

© Copyright IBM Corp. 2007. All rights reserved.
JBDC Job Brokering Definition
Console

JCL Job Control Language

JMS Java Message Services

JSC Job Scheduling Console

JSDL Job Submission Description
Language

LTP Long-term plan

MSCS Microsoft Cluster Service

RA Resource Advisor

RMC Resource Monitoring and
Control

RMI Remote Method Invocation

RSCT Reliable Scalable Cluster
Technology

SASP Server/Application State
Protocol

SLA Service level agreement

SOA Service-oriented architecture

SOAP Simple Object Access
Protocol

TCA Tivoli Common Agent

TCO Total cost of ownership

TDWB Tivoli Dynamic Workload
Broker

TMR Tivoli Management Region

TPM Tivoli Provisioning Manager

TSM Tivoli Storage Manager

TWS Tivoli Workload Scheduler

USS UNIX System Services

WLM Workload Manager

WS Workstation

WSDL Web Services Description
Language

 663

WSIL Web Services Inspection
Language

WTO Write-to-operator

664 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this IBM Redbook.

IBM Redbooks

For information about ordering these publications, see “How to get IBM
Redbooks” on page 666. Note that some of the documents referenced here may
be available in softcopy only.

� Deployment Guide Series: IBM Tivoli Provisioning Manager Version 5.1,
SG24-7261

� Developing Workflows and Automation Packages for IBM Tivoli Intelligent
Orchestrator V3.1, SG24-6057

� Web Services Handbook for WebSphere Application Server 6.1, SG24-7257

� WebSphere Application Server Network Deployment V6: High Availability
Solutions, SG24-6688

Other publications

These publications are also relevant as further information sources:

� IBM Tivoli Dynamic Workload Broker User's Guide Version 1.1, SC32-2281

� IBM Tivoli Dynamic Workload Broker Installation and Configuration,
SC32-2282

� IBM Tivoli Workload Scheduler for z/OS Scheduling End-to-end, SC32-1732

� IBM Tivoli Workload Scheduler for z/OS Managing the Workload, SC32-1263

� IBM Tivoli Monitoring Administrator's Guide Version 6.1.0, SC32-9408

� IBM Tivoli Monitoring Installation and Setup Guide Version 6.1.0, GC32-9407

� IBM Tivoli System Automation for Multiplatforms Base Component User's
Guide, SC33-8210

© Copyright IBM Corp. 2007. All rights reserved. 665

Online resources

These Web sites are also relevant as further information sources:

� System prerequisites for DB2 installations on AIX:

http://www-1.ibm.com/support/docview.wss?rs=71&uid=swg21181544

� System prerequisites for DB2 installations on Linux:

http://www-306.ibm.com/software/data/db2/linux/validate/platdist82.html

� System prerequisites for DB2 installations on Windows:

http://www-1.ibm.com/support/docview.wss?rs=71&uid=swg21176759

� Most up-to-date system operating system information for DB2:

http://www.ibm.com/software/data/db2/udb/sysreqs.html

� WebSphere Application Server V6.0.2 hardware requirements summary:

http://www-1.ibm.com/support/docview.wss?rs=180&uid=swg27007250

� WebSphere Application Server V6.0.2 detailed system requirements:

http://www-1.ibm.com/support/docview.wss?rs=180&uid=swg27007256

� Tivoli Dynamic Workload Broker systems requirements:

http://ibm.com/support/docview.wss?rs=3190&uid=swg24013539

� DB2 online manuals:

http://publib.boulder.ibm.com/infocenter/db2luw/v8//index.jsp

� Tivoli Dynamic Workload Broker systems requirements:

http://ibm.com/support/docview.wss?rs=3190&uid=swg24013539

� DB2 online manuals:

http://publib.boulder.ibm.com/infocenter/db2luw/v8//index.jsp

How to get IBM Redbooks

You can search for, view, or download Redbooks, IBM Redpapers, Technotes,
draft publications and Additional materials, as well as order hardcopy Redbooks,
at this Web site:

ibm.com/redbooks

666 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www-306.ibm.com/software/data/db2/linux/validate/platdist82.html
http://www.ibm.com/software/data/db2/udb/sysreqs.html
http://www.ibm.com/software/data/db2/udb/sysreqs.html
http://www.ibm.com/software/data/db2/udb/sysreqs.html
http://www.ibm.com/software/data/db2/udb/sysreqs.html
http://www-1.ibm.com/support/docview.wss?rs=180&uid=swg27007250
http://www-1.ibm.com/support/docview.wss?rs=180&uid=swg27007256
http://ibm.com/support/docview.wss?rs=3190&uid=swg24013539
http://publib.boulder.ibm.com/infocenter/db2luw/v8//index.jsp
http://ibm.com/support/docview.wss?rs=3190&uid=swg24013539
http://publib.boulder.ibm.com/infocenter/db2luw/v8//index.jsp

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services

 Related publications 667

http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

668 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Symbols
&OADID 587, 597

Numerics
0000 error code 622

A
Add/Remove Programs feature 137
affinity 405
affinity between two or more jobs 154
affinity relationship 154
Agent Manager 39, 57

manual uninstall 138
Agent Manager’s Certification Authority 58
Agent Resource Advisor parameters 290

NotifyToResourceAdvisorIntervalSecs 290
ScanOnNotification 290
UIMComputerSystemScanner.ScanInterval-
Secs 290
UIMFileSystemScanner.ScanIntervalSecs 290
UIMNetworkScanner.ScanIntervalSecs 290
UIMOperatingSystemScanner.ScanInterval-
Sec 290

agent’s private key 57
agent’s public key 57
AgentRegistryDBAuth 504
agentTrust.jks truststore file 102
alert 618
align IT to business goals 3
ALLOCATION FAILED state 293
Allocation Repository 34
allocation type Exclusive 578
allocation type Shared 575
Application Description database 522
Application element 195
Application filter xml file 637
Application Response Measurement (ARM) 636
ArchivedJobsMaxAge 284
args 455
ARM instrumented 630
arm.enabled=true 636
authentication in client network 60
authentication mechanism 59
availability of consumable resources 32

B
b 404

backupConfig command 85
business processes 14
business scenarios 7

C
Cancel action 620
CandidateHosts 201
candidateOperationSystem 203
category attribute 650
centalized management 17
centralized jobs 525
centralized script jobs 525
Certification Authority 39
changeme password 102
chargeback 18
CheckInterval 287
CheckInterval parameter 286
choreography 162
CLI command property file 233
CLI functionalities 234
CLIConfig.properties 514
CLIConfig.properties file 219
CLIConfig.propoerties file 233
client’s private key 57
CLItrace.log 503
cluster manager 2
cluster multi-processing (CMP) 536
command line interface 232
Command Line Interface (CLI) 48
Common Agent 372, 377

Windows service 373
Common Agent Services 60
Common Agent Services (CAS) 38
Common Agent Services infrastructure 39
Common Object Model (COM) 398
Common Object Request Broker Architecture
(CORBA) 398
composer 167
composer command 192
comprehensive end-to-end solution 301
Confidentiality and Integrity features 57
controller 520, 523
core application class 456
CPU utilization 32
CPUHOST 549
CPULIMIT 549
CPUOS 549
CPUREC 549

 669

CPUTCPIP 549
credential element 152
credential vault 228
current plan 522

D
data provider 379, 511
DB2 client 84
DB2 Remote Command Server 366
db2diag.log 499
db2support 500
default certificates 57
Deployment Manager 254
deployment scenarios 66
Direct EJB job 198
Distributed Objects 398
Distributed Objects architecture 398
DNS server 252
domain manager 13, 143, 628
domain manager listening port 544
dynamic computing environment 8
Dynamic Failsafe Installation Framework (CMISMP)
496–497
Dynamic Virtual IP Address (DVIPA) 536

E
Eclipse V 3.2.1 462
Eclipse workspace 470
enable global security 220
End-to-end workload automation 3
Enforce Java 2 security 222
engine 520
Enterprise Java Beans (EJB) 197
Enterprise Java Beans (EJB) calls 197
Enterprise Workload Manager (EWLM) 15

Control Center 653
enablement 29
management domains 628

Enterprise Workload Manager Management Do-
main 18
environment variables 160
ERP application workloads 6
error code 609
-eventFilePathName argument 509
Execution element 195
extended agents 520
extended status code 609
Extensible Markup Language (XML) 399

external jobname 559
external LDAP 227

F
FAIL 622
FailQInterval 283
fault-tolerant agent 165
FILE data provider 344
fileSystem 204
firewall support 59
Free Physical Memory 168
Free Swap Space 168
Free Virtual Memory 168
FT Work station flag 548

G
generate_customer_price_list 20
generated class 456
generic alert 618
getstatus command 280
getting notification 431
getting the job output 419
Grid computing 2
Grid computing technology 3
Grid environment 14

H
HAGS (High Availability Group Services) 249
HATS (High Availability Topology Services) 249
high availability 248
High availability scenario 248
HistoryDataChunk 285

I
IBM 504
IBM Change and Configuration Management Data-
base (CCMDB) enablement 29
IBM Enterprise Workload Manager 7
IBM HACMP 536
IBM IT Service Management strategy 302
IBM Service Management 7
IBM Tivoli Business Systems Manager 7
IBM Tivoli Change and Configuration Management
Database. 302
IBM Tivoli Enterprise Portal 7
IBM Tivoli Monitoring

sampling interval 388

670 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Universal Agent
SCRIPT data provider 379

Windows OS agent 388
IBM Tivoli Monitoring integration

configuring the Universal Agent 337
FILE data provider 337
Formula button 366
KUMP_DP_FILE_SWITCH_CHECK_INTERVA
L 341
Manage Tivoli Monitoring Services 338
maximum size of the log file 336
reconfiguring the Universal Agent 341
sampling interval 376
setting up a corrective action 367
TEPListener component 333, 344
testing the corrective action 372
testing the monitoring settings 366
Universal Agent definitions metafile 334
Windows OS agent 372

IBM Tivoli Monitoring Universal Agent 510
IBM Tivoli Provisioning Manager 7
IBM Tivoli Service Level Advisor 7
IBM Tivoli software family 301
IBM Tivoli Storage Manager 7
IBM Tivoli System Automation for Multiplatforms 7,
537
IBM Tivoli System Automation for z/OS 7
IBM Tivoli workload automation portfolio 6, 16

IBM Tivoli Dynamic Workload Broker 6
IBM Tivoli Workload Scheduler 6
IBM Tivoli Workload Scheduler for Applications
6
IBM Tivoli Workload Scheduler for z/OS 6
IBM Tivoli Workload Scheduler LoadLeveler 6
technical overview 16

IBM Tivoli workload automation solutions 4
IBM Tivoli Workload Scheduler for Virtualized Data
Centers 7
IBM Tivoli Workload Scheduler for z/OS 517
IBM Tivoli Workload Scheduler for z/OS end-to-end
517
IBM WebSphere JAX-RPC 448
IBM Workload Manager for z/OS 7
improve business efficiency 2
Indirect EJB job 199
installation methods 92
Installing

DB2 on Linux 255
Tivoli Dynamic Workload Broker and CCMDB

enablement 306
Tivoli Dynamic Workload Broker and the Tivoli
Provisioning Manager enablement 315
Tivoli Dynamic Workload Broker Job Brokering
Definition Console 134
Tivoli Dynamic Workload Broker server

Custom Install 108
Typical install 96
uninstallation 137
UNIX 93
Windows 93
with the installation wizard 95

Tivoli Dynamic Workload Broker Web Console
124
Tivoli System Automation 252
Tivoli Workload Scheduler agent 544
Tivoli Workload Scheduler for z/OS end-to-end
540
WebSphere Application Server 263
WebSphere Application Server patch 269
with silent installation 92
with the installation wizard 92

Integrated Solutions Console 63, 227
Integrated Solutions Console (ISC) 45, 82, 148,
227
Integrated Solutions Console (ISC) J2EE applica-
tion 45
Integrating

our lab environment for integration scenarios
302
with Enterprise Workload Manager 627
with IBM Tivoli Change and Configuration Man-
agement Database 302
with IBM Tivoli Monitoring 325
with IBM Tivoli Provisioning Manager 313
with other IBM Tivoli products 301
with Tivoli Workload Scheduler 70

intermittent network 293
interpositioned Tivoli Workload Scheduler domain
manager 534
INTRACTV 559
irect 199
isc.properties 125
iscadmin 228
IT resources 2
ITDWB Enterprise Application 377
ITDWB enterprise application 391
ITDWB User Name 546
ITDWB User Password 546

 671

J
J2EE credentials 152
J2EE element 197

Credential 197
ejb 197
invoker 197
jms 197

J2EE enterprise application 28
J2EE jobs 197
Java 399
Java API for XML 399
JAX-RPC 399
JDK 1.4.2 485
JMS (Java Message Services) 197
JMS (Java Message Services) messages 197
Job 626
Job affinity 154, 431, 580
job affinity 580
job alias 154, 599
Job Brokering Definition Console (JBDC) 50
Job Control Language (JCL) 525
job definition 143
Job Definition Management Service 404, 421
Job Definition Management Service service 421
Job Dispatcher 33
Job Dispatcher parameters 282

ArchivedJobsMaxAge 284
FailQInterval 283
HistoryDataChunk 285
MaxNotificationCount 283
MaxProcessingWorkers 285
MoveHistoryDataFrequencyInMins 283
Queue.actions 286
Queue.size 286
SuccessfulJobsMaxAge 283
UnsuccessfulJobsMaxAge 283

Job error 618
Job error handling 621
Job Execution Agent 35
Job Execution parameters 291

notifier.maxretries 291
notifier.retryinterval 291
workmanager.maxjobs 291

Job Factory Service 404–405
Job Factory service 405
job instance information 616
Job Instance Recovery information 584
Job JCL 525
Job late 618

Job long duration 618
Job Management Definition Service 405
Job Repository 33, 193
Job Scheduling Console 521, 613
Job Scheduling Console (JSC) 521
Job script 525
Job Service 404–405, 416
job status 609
job stream 165
Job stream database 522
Job Submission Description Language (JSDL) 43,
49, 143, 192

Application element 195
Category element 193
create and edit JSDL files 193
Execution element 195
J2EE element 197
Optimization element 213
pseudo schema definition 193
reference 192
Related resources element 210
Resource element 200
Scheduling element 215
Variable element 194

job tailoring 586
Job tracking 526
Job.wsdl 405
job_jobs table 238
jobcancel 234, 240, 620
JobDefinitionMgmt.wsdl 405, 421
jobdetails 173, 234, 242
JobDispatcherConfig 284
JobDispatcherConfig.properties 282
jobexecutionagent service 290
JobExecutionAgent.properties 636
JobExecutionAgentConfig.properties 282
JobFactory Web Service 456, 486
JobFactory.wsdl 405
jobFactory.wsdl 405
jobgetexecutionlog 173, 234, 239
jobIdentifier 417
jobquery 173, 234
jobquery.bat 244
JOBREC statement 597
JobRepository database 235
Jobstore 237
jobstore 234
jobsubmit 234, 238
jobsubmit command 154

672 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

JOBUSR 559
JSDL element 155
jsdl extension 143
JSDL language 143
JSDL statements 143
JSDL variables element 156

K
keystore files 102
KeyStore password 233
Kill 620
KUMA_STARTUP_DP 341
KUMP_DP_FILE_SWITCH_CHECK_INTERVAL
341

L
launchpad.exe 93
LDAP user 232
link command 550, 606
load balancer 2, 628
LoadLeveler 11, 16
LoadLeveler architecture diagram 11
lock escalation 292
Logical resource 205
Logical resource Quantity 573
logical resource t 165
long term plan 522
lsrel command 279

M
Manage Tivoli Monitoring Services 338
managed computer 165
managing server 55
manual workload assignments 4
mapping of namespaces into package names 452
market trends and directions 2
master domain manager 165, 192
master node 248
MaxAllocsInCache 288
MaxAllocsPerTimeSlot 289
MaxExtensionCount 289
MaxNotificationCount 283, 288
MaxProcessingWorkers 285
MaxWaitingTime 287
messaging protocol 399
Microsoft Cluster Service (MSCS) 536
MissedHeartBeatCount 287

mkrpdomain command 254
mkrsrc command 249
movehistorydata 234, 245
MoveHistoryDataFrequencyInMins 283
movhistorydata script 246
mutual SSL handshake 54, 60

N
native ARM library 636
native discovery capabilities 302
native jobs 195
Navigator pane. 367
netmon.cf file 255
NetView 618
network traffic 293
new threading model 284
non-centralized script jobs 525
Note on job alias 599
notifier.maxretries 291
notifier.retryinterval 291
NotifyTimeInterval 288
NotifyToResourceAdvisorIntervalSecs 290

O
old job data archiving 292
OPCMASTER 546
Open Grid Services Architecture 7
operating system user 232
Operation Extended Name 559
Optimization

Enterprise Workload Manager type 169
objective type 168

Optimization element 213
Oracle 6

P
passing through the zone boundaries 59
passive-active failover, 248
Passive-active high availability 248
Performance optimization

Best practices 291
configuration parameters 282
JobDispatcherConfig.properties 282
JobExecutionAgentConfig.properties 282
ResourceAdvisorAgentConfig.properties 282
ResourceAdvisorConfig.properties 282

PORTNUMBER 543

 673

private keys 54
product.reg 125

Q
Queue.actions. 286
Queue.size. 286

R
RaaHeartBeatInterval 287
Rational Application Developer scenario 436
Rational Application Developer V7.0 436
RCONDSUC 559
RECOVERY 582
Recovery actions 216
Recovery and restart options 582
recovery prompt 583
Redbooks Web site 666

Contact us xix
Reliable Scalable Cluster Technology(RSCT) 249
remote database 84
Remote Method Invocation (RMI) 398
reporting attribute 548
Resource Advisor (RA) 32
Resource Advisor Agent 35
Resource Advisor parameters 286

CheckInterval 287
MaxAllocsInCache 288
MaxAllocsPerTimeSlot 289
MaxExtensionCount 289
MaxNotificationCount 288
MaxWaitingTime 287
MissedHeartBeatCount 287
NotifyTimeInterval 288
RaaHeartBeatInterval 287
TimeSlotLength 288

Resource allocation failed 154
Resource definitions 44
Resource element 209
Resource Manager 40
resource matching process 32
resource requirements 200

Allocation 201
candidateCPUs 200
candidateHosts 200
candidateOperatingSystems 200
fileSystem 200
Group 201
logicalResource 200

physicalMemory 200
Properties 201
Relationship 201
virtualMemory 200

Resource scope 566
resource selection policies 32
ResourceAdvisorAgentConfig.properties 282
ResourceAdvisorConfig.properties 282
response file 92
RMC (Resource Monitoring and Control) 249

S
sampling interval 388
SAP 6
ScanOnNotification 290
Scenarios 9

Enterprise Workload Manager integration 629
IBM Tivoli Monitoring 325
IBM Tivoli Provisioning Manager integration
313
Tivoli Change and Configuration Management
integration 305
Tivoli Dynamic Workload Broker as a Web Ser-
vices solution 14
Tivoli Workload Scheduler for z/OS end-to-end
integration 12
Tivoli Workload Scheduler integration 9
Tivoli Workload Scheduler LoadLeveler integra-
tion 10

Scheduling element 215
scheduling lifecycle 15
scheduling operator 14
Scheduling-N2PMap.jd.properties 449
SCRIPT data provider 379
SCRPTLIB 525, 587
SCRPTLIB members 525, 587
secure communication 57
secure connection 60
serializing access to resources 577
server’s certificate 57
server’s private key 57
server’s public key 57
Service Broker 399
service level aggreement (SLA) 7
Service Oriented Architecture (SOA) 2, 396
service registry 399
service-oriented architecture 397
servlet request 18

674 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

shared resource 573
Silent installation 92
Simple Object Access Protocol (SOAP) 399
situation 328
situation formula editor 375
skeleton 398
slow network 293
SOA job brokering services 71
SOA processes 13, 15
special resource 566
SRSTAT 574
SSL handshake 57
SSLLEVEL 549
standard agent 143, 165, 180, 520
standby engine 536
standby node 248
status code 609
Status mapping 610
Step List window 493
String object 410
StringBuffer 410
stringent service level agreements 3–4
stringent SLAs 2
stub. 398
SubmitJobFromJSDL 407
SubmitJobFromNameResponse 410
Submitter.java class 460
Substitution of variables in JSDL 589
Substitution of variables in SCRPTLIB members
587
SuccessfulJobsMaxAge 283
Supplied Variable 587
supply chain 14
Switch Manager funtion 513
Symphony file 522, 587
Symphony file distribution 523
sysplex 536
SystemOut.log 509, 552

T
Table view 346
tar 86
TaskHandler interface 199
TCP/IP port 541
TDWB 43
TDWB Agent.xml 637–638
TDWB database 98, 401
tdwb_env.bat 234

TDWBClientKeyFile.jks 56
TDWBClientTrustFile.jks 56
TDWBServerKeyFile.jks 56
TDWBServerTrustFile.jks 56
TEPListener component 344
TEPListener.properties 507–508
TEPListener.properties file 508
TimeSlotLength 288
tioappadmin 314
Tivoli Agent Manager 67–68, 82
Tivoli Agent Manager database 82
Tivoli Application Dependency Discovery (TADDM)
304
Tivoli Business Systems Manager 618
Tivoli Common Agent 68
Tivoli Dynamic Workload Agent 299
Tivoli Dynamic Workload Broker 4

activating traces 492
affinity 580
agent 34
agent components 35

Job Execution Agent 35
Resource Advisor Agent 35

agent subcomponents 35
Job Execution Agent 35

J2EE Job Executor 35
Native Job Executor 35

Allocation Repository 34
architecture 25

topological view 27
Command line interface 232
default ports 657

Agent Manager 658
Common Agent 661
DB2 server 659
Integrated Solutions Console 659
server 658
WebSphere Application Server 660

deployment scenarios 66
enabling global security 220
high availability 248
Job Dispatcher 33
jobs - detailed discussion 400
JSDL reference 192
managed computers 153
manual uninstall 138
Oracle support 83
Performance optimization 281, 301

agent parameters 289

 675

Best practices 291
agent 294
server 291

configuration parameters 282
Job Dispatcher 282
Resource Advisor 286
scalability tests 297
scenario 295

Resource Repository 32
running on 64 bit computers 86
scheduling lifecycle 15
security 218
security roles 223

Administrator 224
apping to users and/or groups 226
Configurator 225
Developer 225
Operator 224
Submitter 224
WSClient 223

server components 28
server database 82
standalone solution 69
terminology 625

job 626
Job Brokering Definition Console 626
server 625
Workload agent 626

Tivoli Dynamic Workload Broker high availability
248
user authentication 218
Web Services interface 396

Tivoli Dynamic Workload Broker affinity 580
Tivoli Dynamic Workload Broker Job Brokering Def-
inition Console (JBDC) 147
Tivoli Dynamic Workload Broker V1.2 284, 288,
397

new threading model 284
Tivoli Dynamic Workload Broker Web Console 148

activating traces 493
managing users 227

Tivoli Dynamic Workload Scheduler V8.3 299
Tivoli Endpoint 39
Tivoli Enterprise Portal 344
Tivoli Management Region (TMR) server 39
Tivoli Monitoring server 350
Tivoli Provisioning Manager 314
Tivoli Provisioning Manager (TPM) enablement 29
Tivoli Provisioning Manager V5.1 313

Tivoli Provisioning Manager workflow 313
Tivoli Storage Manager (TSM) 45
Tivoli System Automation 248
Tivoli System Automation for Multiplatforms 248

configuring 253

adding resources to resource group 254
creating a resource group 254
creating a Tivoli System Automation Domain
254
creating equivalencies 254
defining a tie breaker 254
lsrpdomain 254
mkequ 254
mkrel 254
mkrpdomain 254
prepare both nodes 253
specifying dependencies 254

how it works 249
IBM.ServiceIP resource class 249
installing 252
setting up Tivoli Dynamic Workload Broker 277
terminology 249

Cluster or peer domain 249
Equivalency 250
Managed resource 250
Nominal state 250
Relationships 250

Location relationships 251
Start/stop relationships 250

Resource 249
Resource class 249
Resource group 250
Resource manager 251

Configuration RM 251
Event Response RM 251
Global Resource RM 251
Recovery RM 251
Test RM 252
valid product license 253

Testing the environment 280
tie breaker 255
upgrading 253
variable CT_MANAGMENT_SCOPE 253

Tivoli Workload Scheduler (TWS) 45
Tivoli Workload Scheduler affinity 580
Tivoli Workload Scheduler agent 82
Tivoli Workload Scheduler agent listening port 544
Tivoli Workload Scheduler agent plug-in 153

676 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Tivoli Workload Scheduler Domain Manager Name
546
Tivoli Workload Scheduler for Virtualized Data Cen-
ters 6
Tivoli Workload Scheduler for z/OS 517

controller 517, 523
end-to-end administrator 517
engine 521
engine high availability 536
strengths 517
trackers 517

Tivoli Workload Scheduler for z/OS controller 520
Tivoli Workload Scheduler for z/OS end to end

Tivoli Dynamic Workload Broker integration 518
Tivoli Workload Scheduler for z/OS end-to-end 6

architecture 518
centralized jobs 525
configuration 540
configuring network connectivity 542
creating the workstation 548
current plan 522
current plan creation 523
database component 522
defining job and job stream definitions 557
examples of integration architectures 532
installation 540
integrated architecture 529
integration benefits 553
job affinity definition 580
job JCL and script definitions 525
job recovery and restart 582
job stream database 522
job submission 526
job tracking 526
long term plan 522
monitoring and control 526, 602
network topology 522
non-centralized script jobs 525
plan component 522
planning and choreography 524, 552
sample resource usage scenario 568
scheduling components 520
SCRPTLIB 525
symphony file 522
symphony file creation 523
symphony file distribution 523
terminology 518
Tivoli Dynamic Workload Broker integration

benefits 518

topology definition 549
user interfaces 521
Version 8.2 or earlier 534
workstation database 522

Tivoli Workload Scheduler for z/OS ISPF panels
522
Tivoli Workload Scheduler for z/OS job notification
618
Tivoli Workload Scheduler for z/OS server 520
Tivoli Workload Scheduler integration 163
Tivoli Workload Scheduler jobs

converting 166
submitting 165

Tivoli Workload Scheduler LoadLeveler 11
TOPOLOGY 543
Total Physical Memory 168
Total Swap Space 168
Total Virtual Memory 168
TPM.pwd 314
TPM.user 314
TPMAddress.hostname 314
TPMAddress.port 314
TPMConfig.properties 217, 314
traditional scheduling 3
transaction class 646
Troubleshooting

CCMDB integration 513
DB2 500
Enterprise Workload Manager integration 512
How to use the Step List 493
IBM Tivoli Monitoring integration 504
ISC Installation 491
JBDC installation 498
JBDC specific problems 498
Sample DB2 troubleshooting scenario 502
Tivoli Dynamic Workload Broker installation
488
Tivoli Workload Scheduler integration 512

truststore 57
TrustStore file 233
TrustStore password 233
TSO User ID 555
TWS Agent 143
TWS Agent Port 546
TWS.Agent.Enable.Debug=true property 513
twsAffinity 581
TWSAgent.properties file 220
TWSAgentConfig.properties 546
TWSAgentConfig.properties file 546

 677

TWSMERGE log 551
types of job variables 155

double 155
integer 155
string 155

U
UDDI (Universal Description, Discovery and Integra-
tion) 399
UIMComputerSystemScanner.ScanIntervalSecs
290
UIMFileSystemScanner.ScanIntervalSecs 290
UIMNetworkScanner.ScanIntervalSecs 290
UIMOperatingSystemScanner.ScanIntervalSecs
290
UNAVL 577
Universal Agent 337, 505
unlink command 606
UnsuccessfulJobsMaxAge 283
unwanted event types 507
Update Installer for WebSphere 86
updateinstaller directory 86
use of job variables in scripts 161
User ID 556
User Name 555
User-defined variable 587
Using the Step List 493
using variables 155

V
variable CT_MANAGMENT_SCOPE 253
Variable element 194
variables 586
VARSUB 597
virtualization 13

W
Web Services 3, 396–397, 399, 404

architecture 396
concepts 397
description 396
Distributed Objects architecture 397
implementation of Distributed Objects 399
interfaces provided by Tivoli Dynamic Workload
Broker 403
local object 398
skeleton 398

stub 398
why would you use 396

Web Services application 14
Web Services client Java packages 470
Web Services Inspection Language (WSIL) 399
Web Services interface 396

Adding the job definitions 423
AddJobDefinition 424
AddJobDefinitionResponse 424

Canceling jobs 417
Cancel 417

creating the sample client 435
development tools 436
providing the WSDL files 440
unning the code 461
using Eclipse 462
using Rational Application Developer 436

Deleting the job definitions 425
DeleteJobDefinition 426

Getting job properties 417
GetExecutionLogPage 420
GetExecutionLogPageResponse 420
GetProperties 418
GetPropertiesResponse 418
Getting the job output 419

Getting the job definition 429
GetJobDefinitionResponse 429

interfaces provided by Tivoli Dynamic Workload
Broker server 403

Job Definition Management Service 404
Job Factory Service 404
Job Service 404

Job Definition Management service 421
job definitions 430

job affinity 431
variables substitution 430

Job service 416
notification about job state changes 431

JobStateEnumeration 432
JobUsageMetricsType 433
NotificationMessageHolderType 434
NotifyJobStatusChange 433

Querying jobs 411
QueryJobs 412
QueryJobsProperties 414
QueryJobsResponse 415

Querying the job definitions 426
QueryJobDefinitionProperties 428
QueryJobDefinitions 426

678 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

QueryJobDefinitionsResponse 428
Submitting jobs 406

SubmitJobFromJSDL 407
SubmitJobFromJSDLResponse 408
SubmitJobFromJSDLXml 410
SubmitJobFromJSDLXmlResponse 411
SubmitJobFromName 409
SubmitJobFromNameResponse 410

Tivoli Dynamic Workload Broker V1.1 397
Updating the job definitions 424

SetJobDefinition 425
SetJobDefinitionResponse 425

Web Services solution 14
Web Services technology 396
WebSphere Application Server 18, 67, 86
WebSphere Application Server 6.0.2.11 83
WebSphere Application Server V 6.0.2.11 83
WebSphere Application Server V6.1 397
websphere_check_tdwb.mdl 384
Windows OS agent 372
workflow 318
workload automation 13
Workload automation solutions 3
workload distribution process 33
workmanager.maxjobs 291
WSDL2Java 469
WSDL2Java conversion tool 469
WSDL2Java utility 470

X
XML 143

Z
z/VM 13
zLinux 13
zLinux on the mainframe 13

 679

680 Getting Started with Tivoli Dynamic Workload Broker Version 1.1

Getting Started w
ith Tivoli Dynam

ic W
orkload Broker

Getting Started w
ith Tivoli Dynam

ic
W

orkload Broker Version 1.1

Getting Started w
ith Tivoli

Dynam
ic W

orkload Broker
Version 1.1

Getting Started w
ith Tivoli Dynam

ic W
orkload Broker Version 1.1

Getting Started w
ith

Tivoli Dynam
ic

W
orkload Broker

Getting Started w
ith

Tivoli Dynam
ic

W
orkload Broker

®

SG24-7442-00 ISBN 0738489484

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Getting Started with
Tivoli Dynamic Workload
Broker Version 1.1

Insider’s guide to
IBM Tivoli Dynamic
Workload Broker

High availability and
performance
considerations

Integration
scenarios

IBM Tivoli Dynamic Workload Broker is a key element in a
comprehensive, on demand, Tivoli workload automation
portfolio. It can use dynamic resource information as well as
recommendations from other products to determine the best
systems to which new jobs will be dispatched.

This IBM Redbooks publication documents the architecture,
installation and customization, operation best practices,
performance optimization, high availability considerations,
Web Services interface, and troubleshooting of Tivoli
Dynamic Workload Broker V1.1.

In addition, we cover integration scenarios with other IBM
products, such as IBM Tivoli Workload Scheduler, IBM Tivoli
Provisioning Manager, IBM Tivoli Change and Configuration
Management Database, IBM Tivoli Monitoring, Tivoli
Enterprise Portal, and IBM Enterprise Workload Manager.

Finally, we discuss Tivoli Dynamic Workload Broker operation
in a IBM Tivoli Workload Scheduler for a z/OS end-to-end
environment.

Clients and Tivoli professionals who are responsible for
installing, administering, maintaining, or using IBM Tivoli
Dynamic Workload Broker will find this book a major
reference.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this IBM Redbook
	Become a published author
	Comments welcome

	Chapter 1. Tivoli Dynamic Workload Broker overview
	1.1 Market trends and directions
	1.2 Business solutions
	1.3 Major functions of Tivoli Dynamic Workload Broker
	1.3.1 IBM Tivoli workload automation portfolio
	1.3.2 Tivoli workload automation integration with IBM products

	1.4 Business scenarios
	1.4.1 Tivoli Workload Scheduler with Tivoli Dynamic Workload Broker
	1.4.2 Tivoli Workload Scheduler and Tivoli Workload Scheduler LoadLeveler
	1.4.3 Tivoli Workload Scheduler for z/OS end-to-end with Tivoli Dynamic Workload Broker
	1.4.4 Tivoli Dynamic Workload Broker as a Web Services solution

	1.5 Technical overview

	Chapter 2. Tivoli Dynamic Workload Broker architecture
	2.1 Topological view
	2.2 Major server components
	2.2.1 Resource Repository
	2.2.2 Resource Advisor
	2.2.3 Job Dispatcher
	2.2.4 Job Repository
	2.2.5 Allocation Repository

	2.3 Tivoli Dynamic Workload Broker agent
	2.3.1 Major agent components
	2.3.2 Agent subcomponents

	2.4 Common Agent Services
	2.4.1 Agent Manager
	2.4.2 Common Agent
	2.4.3 Interaction between Tivoli Dynamic Workload Broker and Common Agent Services

	2.5 Job and resource definitions
	2.5.1 Job definitions
	2.5.2 Resource definitions

	2.6 Tivoli Dynamic Workload Broker User interfaces
	2.6.1 Tivoli Dynamic Workload Broker Web Console
	2.6.2 Command-line interface
	2.6.3 Job Brokering Definition Console

	2.7 Security features
	2.7.1 Encrypted communication
	2.7.2 Firewall support
	2.7.3 Authentication mechanism
	2.7.4 Authorization roles

	2.8 Tivoli Dynamic Workload Broker deployment scenarios
	2.8.1 Location of main Tivoli Dynamic Workload Broker components
	2.8.2 DB2 Universal Database
	2.8.3 WebSphere Application Server
	2.8.4 Tivoli Dynamic Workload Broker server
	2.8.5 Tivoli Dynamic Workload Broker Web Console
	2.8.6 Tivoli Dynamic Workload Job Brokering Definition console
	2.8.7 Tivoli Agent Manager
	2.8.8 Tivoli Common Agents
	2.8.9 Tivoli Dynamic Workload Broker agent
	2.8.10 Tivoli Dynamic Workload Broker standalone solution
	2.8.11 Common usage of Tivoli Workload Scheduler and Tivoli Dynamic Workload Broker
	2.8.12 Setting up monitoring for Tivoli Dynamic Workload Broker

	2.9 Physical location of Tivoli Dynamic Workload Broker’s components
	2.9.1 Locations of server components
	2.9.2 Locations of agent components
	2.9.3 Location of certificates and private keys

	Chapter 3. Tivoli Dynamic Workload Broker installation
	3.1 Introduction
	3.2 Planning for installation
	3.2.1 Tivoli Dynamic Workload Broker software prerequisites
	3.2.2 Tivoli Dynamic Workload Broker hardware prerequisites
	3.2.3 Tivoli Dynamic Workload Broker network

	3.3 Installation
	3.3.1 Choosing the installation method
	3.3.2 Installing the Tivoli Dynamic Workload Broker server with the installation wizard
	3.3.3 Installing the Tivoli Dynamic Workload Broker Web Console
	3.3.4 Installing the Tivoli Dynamic Workload Broker Job Brokering Definition Console
	3.3.5 Installing the IBM Tivoli Dynamic Workload Broker agent

	3.4 Uninstallation

	Chapter 4. Working with Tivoli Dynamic Workload Broker
	4.1 Computers
	4.1.1 Resources
	4.1.2 Tivoli Dynamic Workload Broker Tivoli Workload Scheduler Agent plug-in

	4.2 Working with jobs
	4.2.1 Job definitions
	4.2.2 JBDC, Web Console, and command-line interface
	4.2.3 Job submission
	4.2.4 Credentials for job definitions
	4.2.5 Tivoli Workload Scheduler and Tivoli Dynamic Workload Broker job definitions
	4.2.6 Job affinity

	4.3 Using variables in job definitions
	4.3.1 Job variables
	4.3.2 Environment variables
	4.3.3 Indirect use of job variables in scripts

	4.4 Planning and choreography
	4.4.1 Considerations for Tivoli Workload Scheduler integration

	4.5 Resource matching criteria
	4.5.1 Optimization objective type
	4.5.2 Optimization Enterprise Workload Manager type
	4.5.3 Resources
	4.5.4 Related resources

	4.6 Monitoring computers and jobs

	Chapter 5. Advanced guide to Tivoli Dynamic Workload Broker
	5.1 Tivoli Workload Scheduler migration to Tivoli Dynamic Workload Broker
	5.1.1 Initial Tivoli Workload Scheduler job definition and job stream
	5.1.2 Situation after migration to Tivoli Dynamic Workload Broker
	5.1.3 Create logical resources for the new job definitions
	5.1.4 Extract Tivoli Workload Scheduler job definitions and job streams
	5.1.5 Import Tivoli Workload Scheduler job definitions and job streams to Tivoli Dynamic Workload Broker
	5.1.6 Export Tivoli Workload Scheduler job definitions and job streams to Tivoli Dynamic Workload Broker

	5.2 Job Submission Description Language reference
	5.2.1 Category element
	5.2.2 Variable element
	5.2.3 Application element
	5.2.4 Execution element
	5.2.5 J2EE element
	5.2.6 Resource element
	5.2.7 Related resources element
	5.2.8 Optimization element
	5.2.9 Scheduling element

	5.3 Tivoli Dynamic Workload Broker user authorization and authentication
	5.3.1 Enabling global security
	5.3.2 Tivoli Dynamic Workload Broker security roles
	5.3.3 Mapping security roles to users or groups
	5.3.4 Manage users for Tivoli Dynamic Workload Broker Web Console
	5.3.5 Add users to Tivoli Dynamic Workload Broker Web Console roles

	5.4 Command-line interface
	5.4.1 jobstore
	5.4.2 jobsubmit
	5.4.3 jobgetexecutionlog
	5.4.4 jobcancel
	5.4.5 jobdetails
	5.4.6 jobquery
	5.4.7 movehistorydata

	Chapter 6. High availability and recovery considerations
	6.1 High-availability scenario
	6.2 IBM Tivoli System Automation for Multiplatforms
	6.2.1 How Tivoli System Automation works
	6.2.2 Installing and configuring Tivoli System Automation

	6.3 Installing and configuring DB2
	6.3.1 Installation DB2 UDB
	6.3.2 Configuration of DB2 for Tivoli System Automation

	6.4 Installing and configuring WebSphere Application Server
	6.4.1 Installing WebSphere Application Server
	6.4.2 Installing WebSphere Application Server patch
	6.4.3 Set up WebSphere Application Server on Tivoli System Automation

	6.5 Installing and configuring Tivoli Dynamic Workload Broker
	6.5.1 Installing Tivoli Dynamic Workload Broker
	6.5.2 Setting up Tivoli Dynamic Workload Broker server on Tivoli System Automation

	6.6 Testing the environment

	Chapter 7. Performance optimization
	7.1 Configuration parameters
	7.2 Performance configuration parameters on server
	7.2.1 Job Dispatcher
	7.2.2 Resource Advisor

	7.3 Performance configuration parameters on the agent
	7.3.1 ResourceAdvisorAgentConfig
	7.3.2 JobExecutionAgentConfig

	7.4 Best practices
	7.4.1 Server
	7.4.2 Agent
	7.4.3 A simple scenario for this book

	7.5 Scalability tests
	7.5.1 Scenario for the Tivoli Dynamic Workload Broker V1.2

	Chapter 8. Integration with other IBM Tivoli products
	8.1 Our Tivoli Dynamic Workload Broker integration environment
	8.2 Integration with IBM Tivoli Change and Configuration Management Database (CCMDB)
	8.2.1 Tivoli Change and Configuration Management configuration
	8.2.2 Integration steps

	8.3 Integration with IBM Tivoli Provisioning Manager
	8.3.1 Tivoli Provisioning Manager configuration
	8.3.2 Integration steps

	8.4 Integration with IBM Tivoli Monitoring
	8.4.1 Tivoli Monitoring components and terminology
	8.4.2 Mechanism of integration of Tivoli Dynamic Workload Broker with Tivoli Monitoring
	8.4.3 Pre-integration tasks
	8.4.4 Integration steps
	8.4.5 Changing the integration criteria at a later time
	8.4.6 Configuring Universal Agent to accept a FILE data provider
	8.4.7 Viewing the application in the Tivoli Enterprise Portal
	8.4.8 Creating a view on monitored data
	8.4.9 Setting up thresholds
	8.4.10 Creating situations
	8.4.11 Setting up automatic corrective action
	8.4.12 Advanced monitoring of Tivoli Dynamic Workload Broker
	8.4.13 Default values and file locations

	Chapter 9. Interacting with Tivoli Dynamic Workload Broker using the Web services interface
	9.1 Why you would use the Web services interface
	9.2 Web services concepts
	9.2.1 Brief description of Web services

	9.3 Deeper view of jobs in Tivoli Dynamic Workload Broker
	9.3.1 Job definitions
	9.3.2 Job life cycle within Tivoli Dynamic Workload Broker
	9.3.3 Client interactions

	9.4 Web services interfaces provided by the Tivoli Dynamic Workload Broker server
	9.4.1 How to read this section
	9.4.2 Job Factory service
	9.4.3 Job service
	9.4.4 Job Definition Management service
	9.4.5 Important terms related to job definitions
	9.4.6 Getting notified about job state changes

	9.5 Creating the sample client
	9.5.1 Development tools used in our scenarios
	9.5.2 Creating the sample client using Rational Application Developer
	9.5.3 Creating the sample client using Eclipse
	9.5.4 Running the sample client from the command line
	9.5.5 Necessary Java run time and JAR files for running the client from the command line

	Chapter 10. Troubleshooting
	10.1 Troubleshooting the Tivoli Dynamic Workload Broker installation
	10.1.1 Tivoli Dynamic Workoad Broker Web Console and ISC logs
	10.1.2 Activating traces for the Tivoli Dynamic Workload Broker server
	10.1.3 Activatinge traces for the Tivoli Dynamic Workload Broker Web Console
	10.1.4 Diagnose failure dialogue - using the step list
	10.1.5 Tivoli Dynamic Workload Broker server troubleshooting
	10.1.6 Tivoli Dynamic Workoad Broker agent installation troubleshooting
	10.1.7 JBDC installation troubleshooting
	10.1.8 JBDC-specific problems

	10.2 DB2 troubleshooting
	10.2.1 Diagnostic tools
	10.2.2 Approach to troubleshooting DB2
	10.2.3 Sample DB2 troubleshooting scenario

	10.3 Troubleshooting the integration with IBM Tivoli Monitoring
	10.3.1 Log and trace files location
	10.3.2 Problems with running the integration script on Windows
	10.3.3 Wrongly interpreted characters in log file path on Windows
	10.3.4 Cannot specify multiple event types together with parameters
	10.3.5 Cannot remove unwanted event types
	10.3.6 Tivoli Dynamic Workload Broker log file not created
	10.3.7 Application for log file monitoring is not visible in Tivoli Enterprise Portal (out-of-box integration)
	10.3.8 Application for custom script monitoring is not visible in Tivoli Enterprise Portal

	10.4 Troubleshooting the integration with Enterprise Workload Manager
	10.4.1 Log and trace files location
	10.4.2 Log and trace enablement

	10.5 Troubleshooting the integration with Tivoli Workload Scheduler
	10.5.1 Log and trace files location
	10.5.2 Debugging feature
	10.5.3 Unsupported functions

	10.6 Troubleshooting the integration with CCMDB
	10.6.1 Log and trace files location

	Chapter 11. Managing Tivoli Dynamic Workload Broker jobs using Tivoli Workload Scheduler for z/OS end-to-end
	11.1 Introduction
	11.1.1 Integration benefits
	11.1.2 Terminology

	11.2 Tivoli Dynamic Workload Broker and Tivoli Workload Scheduler for z/OS end-to-end architecture
	11.2.1 Tivoli Workload Scheduler for z/OS end-to-end scheduling
	11.2.2 Tivoli Dynamic Workload Broker scheduling architecture
	11.2.3 Integrated Tivoli Dynamic Workload Broker and Tivoli Workload Scheduler for z/OS end-to-end architecture
	11.2.4 Examples of integration architectures
	11.2.5 High availability and recovery integration

	11.3 Installation and configuration considerations
	11.3.1 Product installation and configuration
	11.3.2 Overview of specific installation and customization steps
	11.3.3 Plan your configuration
	11.3.4 Configure network connectivity
	11.3.5 Installing and configuring the Tivoli Workload Scheduler agent
	11.3.6 Create Tivoli Workload Scheduler for z/OS end-to-end
	11.3.7 Activate the Tivoli Workload Scheduler for z/OS end-to-end workstation
	11.3.8 Verify integration

	11.4 Planning and choreography
	11.4.1 Integration benefits
	11.4.2 Allocation of jobs to computer resources
	11.4.3 Job definition user interfaces
	11.4.4 Defining job and job stream definitions
	11.4.5 Moving existing jobs between the environments

	11.5 Planning and choreography advanced topics
	11.5.1 Logical resource usage and scope
	11.5.2 Sample resource usage scenario
	11.5.3 Serializing access to resources
	11.5.4 Job affinity definition
	11.5.5 Job recovery and restart
	11.5.6 Job tailoring using variables
	11.5.7 Sample variables usage scenario

	11.6 Monitoring and control
	11.6.1 Monitoring and control of infrastructure components
	11.6.2 Monitoring and control of the workload being scheduled

	11.7 Terminology
	11.7.1 Tivoli Workload Scheduler for z/OS end-to-end terminology
	11.7.2 Tivoli Dynamic Workload Broker terminology

	Appendix A. Using Tivoli Dynamic Workload Broker with Enterprise Workload Manager
	IBM Enterprise Workload Manager
	Planning for Tivoli Dynamic Workload Broker/Enterprise Workload Manager interaction
	Platform support
	Communication between products

	Enterprise Workload Manager load balancing recommendations in Tivoli Dynamic Workload Broker
	Starting the interaction
	Turning on Enterprise Workload Manager load balancing
	Enabling Tivoli Dynamic Workload Broker to receive Enterprise Workload Manager Load Balancing weights

	Enabling ARM on the Tivoli Dynamic Workload Broker agent
	Enterprise Workload Manager classification of Tivoli Dynamic Workload Broker jobs
	Create the Enterprise Workload Manager policy
	Tivoli Dynamic Workload Broker/Enterprise Workload Manager joint classification criteria
	Create Enterprise Workload Manager transactions classified by Tivoli Dynamic Workload Broker application name
	Create Enterprise Workload Manager transactions classified by job name
	Create Enterprise Workload Manager transactions by categories

	Confirming interaction from Enterprise Workload Manager Control Center
	Application level load balancing

	Enterprise Workload Manager resource allocation for meeting job goals

	Appendix B. Default ports used by Tivoli Dynamic Workload Broker
	Ports used by Tivoli Dynamic Workload Broker server
	Ports used by Agent Manager
	Ports used by DB2 server
	Ports used by Integrated Solutions Console
	Ports used by Integrated Solutions Console
	Ports used by WebSphere Application Server hosting the Integrated Solutions Console

	Ports used by Common Agent

	Abbreviations and acronyms
	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Back cover

